In this work, the pseudoparabolic problem of the fourth order is investigated to identify the time -dependent potential term under periodic conditions, namely, the integral condition and overdetermination condition. The existence and uniqueness of the solution to the inverse problem are provided. The proposed method involves discretizing the pseudoparabolic equation by using a finite difference scheme, and an iterative optimization algorithm to resolve the inverse problem which views as a nonlinear least-square minimization. The optimization algorithm aims to minimize the difference between the numerical computing solution and the measured data. Tikhonov’s regularization method is also applied to gain stable results. Two
... Show MoreThis paper is concerned with finding solutions to free-boundary inverse coefficient problems. Mathematically, we handle a one-dimensional non-homogeneous heat equation subject to initial and boundary conditions as well as non-localized integral observations of zeroth and first-order heat momentum. The direct problem is solved for the temperature distribution and the non-localized integral measurements using the Crank–Nicolson finite difference method. The inverse problem is solved by simultaneously finding the temperature distribution, the time-dependent free-boundary function indicating the location of the moving interface, and the time-wise thermal diffusivity or advection velocities. We reformulate the inverse problem as a non-
... Show MoreThis article aims to determine the time-dependent heat coefficient together with the temperature solution for a type of semi-linear time-fractional inverse source problem by applying a method based on the finite difference scheme and Tikhonov regularization. An unconditionally stable implicit finite difference scheme is used as a direct (forward) solver. While by the MATLAB routine lsqnonlin from the optimization toolbox, the inverse problem is reformulated as nonlinear least square minimization and solved efficiently. Since the problem is generally incorrect or ill-posed that means any error inclusion in the input data will produce a large error in the output data. Therefore, the Tikhonov regularization technique is applie
... Show More