Suppose that
The aim of this article is to introduce a new definition of domination number in graphs called hn-domination number denoted by . This paper presents some properties which show the concepts of connected and independent hn-domination. Furthermore, some bounds of these parameters are determined, specifically, the impact on hn-domination parameter is studied thoroughly in this paper when a graph is modified by deleting or adding a vertex or deleting an edge.
The main purpose of this paper, is to introduce a topological space , which is induced by reflexive graph and tolerance graph , such that may be infinite. Furthermore, we offered some properties of such as connectedness, compactness, Lindelöf and separate properties. We also study the concept of approximation spaces and get the sufficient and necessary condition that topological space is approximation spaces.
Let be a connected graph with vertices set and edges set . The ordinary distance between any two vertices of is a mapping from into a nonnegative integer number such that is the length of a shortest path. The maximum distance between two subsets and of is the maximum distance between any two vertices and such that belong to and belong to . In this paper, we take a special case of maximum distance when consists of one vertex and consists of vertices, . This distance is defined by: where is the order of a graph .
In this paper, we defined – polynomials based on
... Show MoreIn a connected graph , the distance function between each pair of two vertices from a set vertex is the shortest distance between them and the vertex degree denoted by is the number of edges which are incident to the vertex The Schultz and modified Schultz polynomials of are have defined as:
respectively, where the summations are taken over all unordered pairs of distinct vertices in and is the distance between and in The general forms of Schultz and modified Schultz polynomials shall be found and indices of the edge – identification chain and ring – square graphs in the present work.
For any group G, we define G/H (read” G mod H”) to be the set of left cosets of H in G and this set forms a group under the operation (a)(bH) = abH. The character table of rational representations study to gain the K( SL(2,81)) and K( SL(2, 729)) in this work.
A factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure. In this paper, the factor groups K(SL(2,121)) and K(SL(2,169)) computed for each group from the character table of rational representations.