Suppose that
Assume that G is a finite group and X is a subset of G. The commuting graph is denoted by С(G,X) and has a set of vertices X with two distinct vertices x, y Î X, being connected together on the condition of xy = yx. In this paper, we investigate the structure of Ϲ(G,X) when G is a particular type of Leech lattice groups, namely Higman–Sims group HS and Janko group J2, along with X as a G-conjugacy class of elements of order 3. We will pay particular attention to analyze the discs’ structure and determinate the diameters, girths, and clique number for these graphs.
Let G be a finite group, the result is the involution graph of G, which is an undirected simple graph denoted by the group G as the vertex set and x, y ∈ G adjacent if xy and (xy)2 = 1. In this article, we investigate certain properties of G, the Leech lattice groups HS and McL. The study involves calculating the diameter, the radius, and the girth of ΓGRI.
The result involution graph of a finite group , denoted by is an undirected simple graph whose vertex set is the whole group and two distinct vertices are adjacent if their product is an involution element. In this paper, result involution graphs for all Mathieu groups and connectivity in the graph are studied. The diameter, radius and girth of this graph are also studied. Furthermore, several other graph properties are obtained.
Let/. It :0 ---0 G be any two self maps of a compact connected oriented Lie group G. In this paper, for each positive integer k , we associate an integer with fk,hi . We relate this number with Lefschetz coincidence number. We deduce that for any two differentiable maps f, there exists a positive integer k such that k 5.2+1 , and there is a point x C G such that ft (x) = (x) , where A is the rank of G . Introduction Let G be an n-dimensional com -pact connected Lie group with multip-lication p ( .e 44:0 xG--+G such that p ( x , y) = x.y ) and unit e . Let [G, G] be the set of homotopy classes of maps G G . Given two maps f , f G ---• Jollowing [3], we write f. f 'to denote the map G-.Gdefined by 01.11® =A/WO= fiat® ,sea Given a point g
... Show MoreIn this paper we used Hosoya polynomial ofgroupgraphs Z1,...,Z26 after representing each group as graph and using Dihedral group to"encrypt the plain texts with the immersion property which provided Hosoya polynomial to immerse the cipher text in another"cipher text to become very"difficult to solve.
A complexified adjoint representations of the complexification Lie algebras associated with the special orthogonal group SO(3) and special linear group SL(2,₵) have been obtained. A new representation of their tensor product is naturally arisen and computed in details.
Recently, new generalizations have been presented for the hyponormal operators, which are (N, k)-hyponormal operators and (h, M)-hyponormal operators. Some properties of these concepts have also been proved, one of these properties is that the product of two (N, k)-hyponormal operator is also (N, k)- hyponormal operator and the product of two (h, M)-hyponormal operators is (h, M)-hyponormal operator. In our research, we will reprove these properties by using the (l,m)-commuting operator equations, in addition to that we will solve the (l, m)-commuting operator equations for (N, k)-hyponormal operators and (h, M)-hyponormal operators.
In this paper, the structure of and have been introduced and studied. We also obtain that a is of a if and only if there exists an on such that . In addition, we obtain that of if and only if there is an on such that , where are subspaces of with eigenvalues 1 and −1, respectively. We also find t that the existence of on implies that there exists a compatible under appropriate condition.
The purpose of this paper is to prove the following result : Let R be a 2-torsion free prime *-ring , U a square closed *-Lie ideal, and let T: RR be an additive mapping. Suppose that 3T(xyx) = T(x) y*x* + x*T(y)x* + x*y*T(x) and x*T(xy+yx)x* = x*T(y)x*2 + x*2T(y)x* holds for all pairs x, y U , and T(u) U, for all uU, then T is a reverse *-centralizer.