Suppose that
Let G be a finite group and X be a G-conjugacy of elements of order 3. The A4-graph of G is a simple graph with vertex set X and two vertices x,yÎX are linked if x≠ y and xy-1 is an involution element. This paper aims to investigate the A4-graph properties for the monster Held group He.
Assume that G is a finite group and X is a subset of G. The commuting graph is denoted by С(G,X) and has a set of vertices X with two distinct vertices x, y Î X, being connected together on the condition of xy = yx. In this paper, we investigate the structure of Ϲ(G,X) when G is a particular type of Leech lattice groups, namely Higman–Sims group HS and Janko group J2, along with X as a G-conjugacy class of elements of order 3. We will pay particular attention to analyze the discs’ structure and determinate the diameters, girths, and clique number for these graphs.
Let G be a finite group and X be a conjugacy class of order 3 in G. In this paper, we introduce a new type of graphs, namely A4-graph of G, as a simple graph denoted by A4(G,X) which has X as a vertex set. Two vertices, x and y, are adjacent if and only if x≠y and x y-1=y x-1. General properties of the A4-graph as well as the structure of A4(G,X) when G@ 3D4(2) will be studied.
The result involution graph of a finite group , denoted by is an undirected simple graph whose vertex set is the whole group and two distinct vertices are adjacent if their product is an involution element. In this paper, result involution graphs for all Mathieu groups and connectivity in the graph are studied. The diameter, radius and girth of this graph are also studied. Furthermore, several other graph properties are obtained.
Let G be a finite group, the result is the involution graph of G, which is an undirected simple graph denoted by the group G as the vertex set and x, y ∈ G adjacent if xy and (xy)2 = 1. In this article, we investigate certain properties of G, the Leech lattice groups HS and McL. The study involves calculating the diameter, the radius, and the girth of ΓGRI.
Assume that G is a finite group and X = tG where t is non-identity element with t3 = 1. The simple graph with node set being X such that a, b ∈ X, are adjacent if ab-1 is an involution element, is called the A4-graph, and designated by A4(G, X). In this article, the construction of A4(G, X) is analyzed for G is the twisted group of Lie type 3D4(3).