Assume that G is a finite group and X is a subset of G. The commuting graph is denoted by С(G,X) and has a set of vertices X with two distinct vertices x, y Î X, being connected together on the condition of xy = yx. In this paper, we investigate the structure of Ϲ(G,X) when G is a particular type of Leech lattice groups, namely Higman–Sims group HS and Janko group J2, along with X as a G-conjugacy class of elements of order 3. We will pay particular attention to analyze the discs’ structure and determinate the diameters, girths, and clique number for these graphs.
Suppose that
Let G be a finite group, the result is the involution graph of G, which is an undirected simple graph denoted by the group G as the vertex set and x, y ∈ G adjacent if xy and (xy)2 = 1. In this article, we investigate certain properties of G, the Leech lattice groups HS and McL. The study involves calculating the diameter, the radius, and the girth of ΓGRI.
In this paper we used Hosoya polynomial ofgroupgraphs Z1,...,Z26 after representing each group as graph and using Dihedral group to"encrypt the plain texts with the immersion property which provided Hosoya polynomial to immerse the cipher text in another"cipher text to become very"difficult to solve.
This booklet contains the basic data and graphs forCOVID-19 in Iraq during the first three months of thepandemic ( 24 February to 19 May - 2020 ) , It isperformed to help researchers regarding this health problem (PDF) Information Booklet COVID-19 Graphs For Iraq First 3 Months. Available from: https://www.researchgate.net/publication/341655944_Information_Booklet_COVID-19_Graphs_For_Iraq_First_3_Months#fullTextFileContent [accessed Oct 26 2024].
In this work, the study of corona domination in graphs is carried over which was initially proposed by G. Mahadevan et al. Let be a simple graph. A dominating set S of a graph is said to be a corona-dominating set if every vertex in is either a pendant vertex or a support vertex. The minimum cardinality among all corona-dominating sets is called the corona-domination number and is denoted by (i.e) . In this work, the exact value of the corona domination number for some specific types of graphs are given. Also, some results on the corona domination number for some classes of graphs are obtained and the method used in this paper is a well-known number theory concept with some modification this method can also be applied to obt
... Show MoreBackground Over the past decade there has been a growing awareness of, and interest in, the trace element concentration differences between normal and diseased tissues. Significant changes in tissue concentrations of Zinc (Zn) and Copper (Cu) have been previously reported in inflammation and cancer of certain human tissues.
Aim:(1)To correlate between Zn and Cu concentrations and the histological picture of normal and certain inflamed human tissues, namely the gall bladder (GB) the vermiform appendix (VA), visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). (2) to detect whether there is a difference in the above-mentioned parameters between VAT and SAT. (3) to obtain recordings for trace element levels in human tissu
NiTi (also called Nitinol) transforms from cubic (austenite) to monoclinic (martensite), and vice versa, owing to the shape memory effect and superelasticity. Nitinol has a large number of biomedical applications because of its low elastic modulus close to that of natural bone material and good resistance to corrosion and fatigue, in addition to the transformation temperatures of nitinol that are close to body temperature. It has many other important applications, such as in the aircraft industry. In all these important applications, especially medical applications, Nitinol stability is an important factor for safety. Our goal is to study the stability of NiTi by calculating the phonon dispersion relation to obtain an accurate u
... Show MoreA complexified adjoint representations of the complexification Lie algebras associated with the special orthogonal group SO(3) and special linear group SL(2,₵) have been obtained. A new representation of their tensor product is naturally arisen and computed in details.
The aim of the paper is to compute projective maximum distance separable codes, -MDS of two and three dimensions with certain lengths and Hamming weight distribution from the arcs in the projective line and plane over the finite field of order twenty-five. Also, the linear codes generated by an incidence matrix of points and lines of were studied over different finite fields.