Assume that G is a finite group and X = tG where t is non-identity element with t3 = 1. The simple graph with node set being X such that a, b ∈ X, are adjacent if ab-1 is an involution element, is called the A4-graph, and designated by A4(G, X). In this article, the construction of A4(G, X) is analyzed for G is the twisted group of Lie type 3D4(3).
The concept of the order sum graph associated with a finite group based on the order of the group and order of group elements is introduced. Some of the properties and characteristics such as size, chromatic number, domination number, diameter, circumference, independence number, clique number, vertex connectivity, spectra, and Laplacian spectra of the order sum graph are determined. Characterizations of the order sum graph to be complete, perfect, etc. are also obtained.
The main objective of this paper is to find the order and its exponent, the general form of all conjugacy classes, Artin characters table and Artin exponent for the group of lower unitriangular matrices L(3,? p ), where p is prime number.
Advances in digital technology and the World Wide Web has led to the increase of digital documents that are used for various purposes such as publishing and digital library. This phenomenon raises awareness for the requirement of effective techniques that can help during the search and retrieval of text. One of the most needed tasks is clustering, which categorizes documents automatically into meaningful groups. Clustering is an important task in data mining and machine learning. The accuracy of clustering depends tightly on the selection of the text representation method. Traditional methods of text representation model documents as bags of words using term-frequency index document frequency (TFIDF). This method ignores the relationship an
... Show MoreRecently, complementary perfect corona domination in graphs was introduced. A dominating set S of a graph G is said to be a complementary perfect corona dominating set (CPCD – set) if each vertex in is either a pendent vertex or a support vertex and has a perfect matching. The minimum cardinality of a complementary perfect corona dominating set is called the complementary perfect corona domination number and is denoted by . In this paper, our parameter hasbeen discussed for power graphs of path and cycle.
The set of all (n×n) non-singular matrices over the field F. And this set forms a group under the operation of matrix multiplication. This group is called the general linear group of dimension over the field F, denoted by . The determinant of these matrices is a homomorphism from into F* and the kernel of this homomorphism was the special linear group and denoted by Thus is the subgroup of which contains all matrices of determinant one.
The rationally valued characters of the rational representations are written as a linear combination of the induced characters for the groups discussed in this paper. We find the Artin indicator for this group after studying the rationally valued characters of the rational
... Show MoreThe set of all (n×n) non-singular matrices over the field F this set forms a group under the operation of matrix multiplication. This group is called the general linear group of dimension over the field F, denoted by . The determinant of these matrices is a homomorphism from into F* and the kernel of this homomorphism was the special linear group and denoted by Thus is the subgroup of which contains all matrices of determinant one.
The rational valued characters of the rational representations written as a linear combination of the induced characters for the groups discuss in this paper and find the Artin indicator for this group after study the rational valued characters of the rational representations and the induce
... Show MoreIn This paper, we introduce the associated graphs of commutative KU-algebra. Firstly, we define the KU-graph which is determined by all the elements of commutative KU-algebra as vertices. Secondly, the graph of equivalence classes of commutative KU-algebra is studied and several examples are presented. Also, by using the definition of graph folding, we prove that the graph of equivalence classes and the graph folding of commutative KU-algebra are the same, where the graph is complete bipartite graph.