The aim of our work is to develop a new type of games which are related to (D, WD, LD) compactness of topological groups. We used an infinite game that corresponds to our work. Also, we used an alternating game in which the response of the second player depends on the choice of the first one. Many results of winning and losing strategies have been studied, consistent with the nature of the topological groups. As well as, we presented some topological groups, which fail to have winning strategies and we give some illustrated examples. Finally, the effect of functions on the aforementioned compactness strategies was studied.
Many studies of the relationship between COVID-19 and different factors have been conducted since the beginning of the corona pandemic. The relationship between COVID-19 and different biomarkers including ABO blood groups, D-dimer, Ferritin and CRP, was examined. Six hundred (600) patients, were included in this trial among them, 324 (56%) females and the rest 276 (46%) were males. The frequencies of blood types A, B, AB, and O were 25.33, 38.00, 31.33, and 5.33%, respectively, in the case group. Association analysis between the ABO blood group and D-dimer, Ferritin and CRP of COVID-19 patients indicated that there was a statistically significant difference for Ferritin (P≤0.01), but no-significant differences for both D-dimer and CRP.
... Show MoreIn this paper we introduce the basic of definitions of groups for geometric figures; we describe some of geometric figures by using the properties of groups. The classification of some geometric figures by using the properties of some algebraic structures.
The main object of this paper is to study the representations of monomial groups and characters technique for representations of monomial groups. We refer to monomial groups by M-groups. Moreover we investigate the relation of monomial groups and solvable groups. Many applications have been given the symbol G e.g. group of order 297 is an M-group and solvable. For any group G, the factor group G/G? (G? is the derived subgroup of G) is an M-group in particular if G = Sn, SL(4,R).
The purpose of this paper is to introduce a new type of compact spaces, namely semi-p-compact spaces which are stronger than compact spaces; we give properties and characterizations of semi-p-compact spaces.
The goal of this article is to construct fibrewise w-compact (resp. locally w-compact) spaces. Some related results and properties of these concepts will be investigated. Furthermore, we investigate various relationships between these concepts and three classes of fibrewise w-separation axioms.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise near topological spaces over B. Also, we introduce the concepts of fibrewise near closed and near open topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.
Childhood is characterized by ahigh privacy in the life of the child overall educational institutions in the world. Based on this specificity, modern education begins with a holistic vision of the child through all developmental aspects (moral, religious, emotional, social, linguistic, physical, health, and mental). This integration could be achieved through taking into consideration the needs and rights of children and developing curricula that consider these needs and capacities to provide opportunities for developing and supporting the developmental aspects of the child. The contemporary technological developments in the field of computer and the Internet have brought with it new forms, ideas, and problems for children in recent years
... Show MoreWe define and study new ideas of fibrewise topological space on D namely fibrewise multi-topological space on D. We also submit the relevance of fibrewise closed and open topological space on D. Also fibrewise multi-locally sliceable and fibrewise multi-locally section able multi-topological space on D. Furthermore, we propose and prove a number of statements about these ideas.
Abstract: The utility of DNA sequencing in diagnosing and prognosis of diseases is vital for assessing the risk of genetic disorders, particularly for asymptomatic individuals with a genetic predisposition. Such diagnostic approaches are integral in guiding health and lifestyle decisions and preparing families with the necessary foreknowledge to anticipate potential genetic abnormalities. The present study explores implementing a define-by-run deep learning (DL) model optimized using the Tree-structured Parzen estimator algorithm to enhance the precision of genetic diagnostic tools. Unlike conventional models, the define-by-run model bolsters accuracy through dynamic adaptation to data during the learning process and iterative optimization
... Show More