In high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection criteria, as- sessing the correct detection of zero coefficients and the false omission of nonzero coef- ficients. A practical application involving financial data from the Baghdad Soft Drinks Company demonstrates their utility in identifying key predictors of stock market value. The results indicate that MAVE-SCAD performs well in high-dimensional and complex scenarios, whereas MAVE-ALASSO is better suited to small samples, producing more parsimonious models. These results highlight the effectiveness of these two methods in addressing key challenges in semiparametric modeling
This paper includes a comparison between denoising techniques by using statistical approach, principal component analysis with local pixel grouping (PCA-LPG), this procedure is iterated second time to further improve the denoising performance, and other enhancement filters were used. Like adaptive Wiener low pass-filter to a grayscale image that has been degraded by constant power additive noise, based on statistics estimated from a local neighborhood of each pixel. Performs Median filter of the input noisy image, each output pixel contains the Median value in the M-by-N neighborhood around the corresponding pixel in the input image, Gaussian low pass-filter and Order-statistic filter also be used.
Experimental results shows LPG-
... Show MoreWe define L-contraction mapping in the setting of D-metric spaces analogous to L-contraction mappings [1] in complete metric spaces. Also, give a definition for general D- matric spaces.And then prove the existence of fixed point for more general class of mappings in generalized D-metric spaces.
Sub-threshold operation has received a lot of attention in limited performance applications.However, energy optimization of sub-threshold circuits should be performed with the concern of the performance limitation of such circuit. In this paper, a dual size design is proposed for energy minimization of sub-threshold CMOS circuits. The optimal downsizing factor is determined and assigned for some gates on the off-critical paths to minimize the energy at the maximum allowable performance. This assignment is performed using the proposed slack based genetic algorithm which is a heuristic-mixed evolutionary algorithm. Some gates are heuristically assigned to the original and the downsized design based on their slack time determined by static tim
... Show MoreThe precise classification of DNA sequences is pivotal in genomics, holding significant implications for personalized medicine. The stakes are particularly high when classifying key genetic markers such as BRAC, related to breast cancer susceptibility; BRAF, associated with various malignancies; and KRAS, a recognized oncogene. Conventional machine learning techniques often necessitate intricate feature engineering and may not capture the full spectrum of sequence dependencies. To ameliorate these limitations, this study employs an adapted UNet architecture, originally designed for biomedical image segmentation, to classify DNA sequences.The attention mechanism was also tested LONG WITH u-Net architecture to precisely classify DNA sequences
... Show MoreThe pancreatic ductal adenocarcinoma (PDAC), which represents over 90% of pancreatic cancer cases,
has the highest proliferative and metastatic rate in comparison to other pancreatic cancer compartments. This
study is designed to determine whether small nucleolar RNA, H/ACA box 64 (snoRNA64) is associated with
pancreatic cancer initiation and progression. Gene expression data from the Gene Expression Omnibus (GEO)
repository have shown that snoRNA64 expression is reduced in primary and metastatic pancreatic cancer as
compared to normal tissues based on statistical analysis of the in Silico analysis. Using qPCR techniques,
pancreatic cancer cell lines include PK-1, PK-8, PK-4, and Mia PaCa-2 with differ
This paper proposes feedback linearization control (FBLC) based on function approximation technique (FAT) to regulate the vibrational motion of a smart thin plate considering the effect of axial stretching. The FBLC includes designing a nonlinear control law for the stabilization of the target dynamic system while the closedloop dynamics are linear with ensured stability. The objective of the FAT is to estimate the cubic nonlinear restoring force vector using the linear parameterization of weighting and orthogonal basis function matrices. Orthogonal Chebyshev polynomials are used as strong approximators for adaptive schemes. The proposed control architecture is applied to a thin plate with a large deflection that stimulates the axial loadin
... Show MoreThis study deals with knowing the public relations activities of the Integrity Commission for the year 2007, knowing the contents of these activities, knowing the contents of the advertisements that it published, whether the contents of the advertisements were convincing, and whether press photographs were used in these advertisements, as well as whether symbols and slogans were used. What language and words were used to address the recipient? 1- What feelings do the contents of advertisements arouse? 2- Research objectives: This research aims to answer the following questions: What are the public relations activities carried out by the Integrity Commission? B: Are the contents of the advertisements published by the Authority convincing to
... Show More<p><span>This research deals with the feasibility of a mobile robot to navigate and discover its location at unknown environments, and then constructing maps of these navigated environments for future usage. In this work, we proposed a modified Extended Kalman Filter- Simultaneous Localization and Mapping (EKF-SLAM) technique which was implemented for different unknown environments containing a different number of landmarks. Then, the detectable landmarks will play an important role in controlling the overall navigation process and EKF-SLAM technique’s performance. MATLAB simulation results of the EKF-SLAM technique come with better performance as compared with an odometry approach performance in terms of measuring the
... Show More