Let/. It :0 ---0 G be any two self maps of a compact connected oriented Lie group G. In this paper, for each positive integer k , we associate an integer with fk,hi . We relate this number with Lefschetz coincidence number. We deduce that for any two differentiable maps f, there exists a positive integer k such that k 5.2+1 , and there is a point x C G such that ft (x) = (x) , where A is the rank of G . Introduction Let G be an n-dimensional com -pact connected Lie group with multip-lication p ( .e 44:0 xG--+G such that p ( x , y) = x.y ) and unit e . Let [G, G] be the set of homotopy classes of maps G G . Given two maps f , f G ---• Jollowing [3], we write f. f 'to denote the map G-.Gdefined by 01.11® =A/WO= fiat® ,sea Given a point g
... Show Morethis paper give a proof of known conditions for the existence of peridic conincidence points of continuius maps using lindemann theotem on transcendental numbers
Let f and g be a self – maps of a rational exterior space . A natural number m is called a minimal coincidence period of maps f and g if f^m and g^m have a coincidence point which is not coincidence by any earlier iterates. This paper presents a complete description of the set of algebraic coincidence periods for self - maps of a rational exterior space which has rank 2 .
The study of cohomology groups is one of the most intensive and exciting researches that arises from algebraic topology. Particularly, the dimension of cohomology groups is a highly useful invariant which plays a rigorous role in the geometric classification of associative algebras. This work focuses on the applications of low dimensional cohomology groups. In this regards, the cohomology groups of degree zero and degree one of nilpotent associative algebras in dimension four are described in matrix form.
The present paper studies the generalized Φ- recurrent of Kenmotsu type manifolds. This is done to determine the components of the covariant derivative of the Riemannian curvature tensor. Moreover, the conditions which make Kenmotsu type manifolds to be locally symmetric or generalized Φ- recurrent have been established. It is also concluded that the locally symmetric of Kenmotsu type manifolds are generalized recurrent under suitable condition and vice versa. Furthermore, the study establishes the relationship between the Einstein manifolds and locally symmetric of Kenmotsu type manifolds.
For a connected topological space M we define the homeomorphism and period noncoincidence indices of M, each of them is topological invariant reflecting the abundance of fixed point free self homeomorphisms and periodic point free self maps defined on M respectively. We give some results for computing each of these indices and we give some examples and some results relating these indices with Hoffman index.
The purpose of this paper is to introduce and prove some coupled coincidence fixed point theorems for self mappings satisfying -contractive condition with rational expressions on complete partially ordered metric spaces involving altering distance functions with mixed monotone property of the mapping. Our results improve and unify a multitude of coupled fixed point theorems and generalize some recent results in partially ordered metric space. An example is given to show the validity of our main result.
In the present paper, a simply* compact spaces was introduced it defined over simply*- open set previous knowledge and we study the relation between the simply* separation axioms and the compactness, in addition to introduce a new types of functions known as 𝛼𝑆 𝑀∗ _irresolte , 𝛼𝑆 𝑀∗ __𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 and 𝑅 𝑆 𝑀∗ _ continuous, which are defined between two topological spaces.
The aim of this paper is to introduces and study the concept of CSO-compact space via the notation of simply-open sets as well as to investigate their relationship to some well known classes of topological spaces and give some of his properties.