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Abstract

In high-dimensional semiparametric regression, balancing accuracy and interpretability
often requires combining dimension reduction with variable selection. This study intro-
duces two novel methods for dimension reduction in additive partial linear models: (i)
minimum average variance estimation (MAVE) combined with the adaptive least abso-
lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly
clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of
MAVE for sufficient dimension reduction while incorporating adaptive penalties to en-
sure sparse and interpretable models. The performance of both methods is evaluated
through simulations using the mean squared error and variable selection criteria, as-
sessing the correct detection of zero coefficients and the false omission of nonzero coef-
ficients. A practical application involving financial data from the Baghdad Soft Drinks
Company demonstrates their utility in identifying key predictors of stock market value.
The results indicate that MAVE-SCAD performs well in high-dimensional and complex
scenarios, whereas MAVE-ALASSO is better suited to small samples, producing more
parsimonious models. These results highlight the effectiveness of these two methods in
addressing key challenges in semiparametric modeling.

Keywords: Adaptive least absolute shrinkage and selection operator · Dimension
reduction · LASSO · Mean squared error · Minimum average variance estimation
· Smoothly clipped absolute deviation
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1. Introduction

In modern data analysis, balancing interpretability and flexibility in high-dimensional semi-
parametric models is a critical challenge. Additive partial linear models (APLMs) are pow-
erful tools in this context, as they generalize multiple linear regression models while allowing
nonlinear relationships for selected explanatory variables (covariates). APLMs combine the
interpretability of parametric components with the flexibility of nonparametric ones, mak-
ing them particularly suitable for scenarios where the response variable depends linearly on
some covariates but nonlinearly on others (Lian et al., 2014; Xinyu and Wendun, 2019).
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Compared to purely linear models, APLMs offer greater flexibility, and to fully nonpara-
metric models, they mitigate the curse of dimensionality, which is a common limitation in
high-dimensional data analysis (Alkenani and Yu, 2013; Huda and Hmood, 2022). How-
ever, effectively modeling APLMs in high dimensions often requires sufficient dimension
reduction (SDR) techniques, which project the original p-dimensional covariate space onto
a d-dimensional subspace (d < p), preserving essential regression information without fully
specifying the model or error distribution (Leng et al., 2009; Hua et al., 2012).

A limitation in the literature lies in the disconnection between dimension reduction and
variable selection. While minimum average variance estimation (MAVE) is a widely recog-
nized SDR technique (Xia et al., 2014), it lacks mechanisms for selecting relevant variables,
which are critical for achieving sparse and interpretable models. Adaptive penalties, such
as the adaptive least absolute shrinkage and selection operator —ALASSO— (Zou, 2006)
and smoothly clipped absolute deviation —SCAD— (Fan and Li, 2001), have demonstrated
strong capabilities in variable selection and achieving oracle properties. However, their in-
tegration with MAVE in the context of APLMs remains underexplored (Hua et al., 2012).

This study seeks to address this gap by introducing two novel methods: minimum av-
erage variance estimation (MAVE) with adaptive least absolute shrinkage and selection
operator (MAVE-ALASSO) and (ii) MAVE with smoothly SCAD (MAVE-SCAD). These
approaches extend existing SDR techniques by incorporating adaptive penalties to achieve
sparse estimation while preserving model accuracy. Specifically, MAVE-ALASSO combines
MAVE with the adaptive LASSO, offering strong sparsity and consistency properties, while
MAVE-SCAD integrates SCAD with MAVE, reducing shrinkage bias for large coefficients.
Our contributions are twofold. First, we formalize these integrated approaches for variable
selection and dimension reduction within the APLM framework. Second, we compare the
performance of MAVE-ALASSO and MAVE-SCAD using mean squared error (MSE) and
additional variable selection accuracy criteria, “C” (correct identification of zero coefficients)
and “I” (incorrect omission of nonzero coefficients). The effectiveness of these methods is
demonstrated through extensive simulations and a real-data application.

The practical relevance of this study is underscored by its potential applications in high-
dimensional, nonlinear data settings, such as financial modeling, economic forecasting, and
other domains in data science. By addressing the dual challenges of dimension reduction
and variable selection, the proposed methods provide a robust and computationally efficient
framework for analyzing complex data.

The article is organized as follows. Section 2 introduces the methodological framework
Section 3 discusses the practical implementation of MAVE. In Section 4, we focus on the
MAVE-ALASSO and MAVE-SCAD procedures. In Section 5, the performance of the pro-
posed methods is evaluated through an extensive simulation study, while Section 6 illustrates
their application to a real-world dataset. Section 7 concludes the article.

2. Methodological framework

In this section, we present the methodological framework underlying APLMs and their
integration with SDR techniques. We focus on the use of MAVE coupled with adaptive
penalization for dimension reduction and variable selection.

2.1 Additive partial linear model

APLMs are semiparametric models that combine both a linear component for some and
nonparametric components for the remaining ones (Huda and Hmood, 2022; Hua et al.,
2012; Da Silva et al., 2011). By partially specifying the model as linear and partially as non-
parametric, APLMs allow the inclusion of nonlinear effects while retaining interpretability
and reducing complexity relative to fully nonparametric approaches.
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Formally, an APLM can be written as

Y = X>β +
K∑
k=1

gk(Zk) + ε, (2.1)

where, for each i ∈ {1, . . . , n}, Xi = (Xi1, . . . , Xid)> is the vector of linear covariates;
Zi = (Zi1, . . . , Zik)> is the vector of nonlinear covariates; g1, . . . , gK are unknown smooth
functions; β = (β1, . . . , βd)> is a vector of unknown parameters corresponding to the linear
part; and εi is the random error, assumed to be independent of (Xi,Zi) with mean zero and
variance σ2. To ensure identifiability for each gk, it is customary to impose the constraint
E[gk(Zk)] = 0, for k ∈ {1, . . . , K}.

An important advantage of APLMs is their capacity to combine the clarity of linear mod-
eling for certain covariates with the ability to represent nonlinear effects through g1, . . . , gK .
By balancing these components, APLMs address the limitations of fully nonparametric
models, which often require substantial sample sizes to reliably estimate high-dimensional
structures (Alkenani and Yu, 2013; Huda and Hmood, 2022).

In subsequent sections, we incorporate ideas from SDR into the APLM framework. Specif-
ically, we utilize MAVE coupled with penalization (ALASSO or SCAD) to perform both
dimension reduction and variable selection within the APLM.

2.2 Sufficient dimension reduction

SDR aims to find a low-dimensional linear subspace of the original covariate space that
preserves essential information about the conditional distribution Y | X. A key concept in
SDR is the central mean subspace (CMS), denoted by SE[Y |X], which is the smallest subspace
S ⊆ Rp such that E[Y | X] = E[Y | PSX], where PS is the orthogonal projection onto the
subspace S. Intuitively, SE[Y |X] spans all linear combinations of X needed to determine
E[Y | X] (Hua et al., 2012; Cook and Bing, 2002; Wang et al., 2014; Cook and Forzani,
2009).

Several methods have been proposed to estimate the CMS, including the iterative Hes-
sian transformation and the MAVE approach (Horowitz, 2015). In the context of APLMs,
combining MAVE with penalization not only helps to reduce dimensionality but also facil-
itates variable selection. In the next sections, we present two penalized MAVE procedures:
MAVE-ALASSO and MAVE-SCAD. The MAVE method (Huang et al., 2008) is a widely
used approach for SDR that employs local linear smoothing. It does not require strong as-
sumptions on the distribution or the functional form of the covariates X, and it adaptively
estimates the underlying structure without specifying a parametric link function. Conse-
quently, MAVE is flexible and can effectively capture nonlinear relationships within the
CMS.

2.3 Minimum average variance estimation

To estimate the projection matrix B in a dimension-reduction context, MAVE aims to solve

min
B

{
E[(Y − E[Y |X>B])2]

}
. (2.2)

Let B =
(
b1, . . . , bd

)
be an orthonormal matrix of size p × d ( B>B = Id). For each B,

define the conditional variance function stated as

σ2
B

(
X>B

)
= E[(Y − E[Y |X>B])2

∣∣∣X>B], (2.3)
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so that

E
[(
Y − E[Y |X>B]

)2] = E
[
σ2

B

(
X>B

)]
. (2.4)

SinceB>B = Id, minimizing the left-hand side of Equation (2.4) is equivalent to minimizing

E
[
σ2

B(X>B)
]
. (2.5)

Hence, we have that

min
B

{
E
[(
Y − E[Y |X>B]

)2]} = min
B

{
E
[
σ2

B

(
X>B

)]}
. (2.6)

In other words, finding B that minimizes E
[
σ2

B(·)
]

yields the optimal dimension reduction
in the sense of preserving E[Y |X].

3. Implementation and practical considerations

This section focuses on the practical aspects of applying the MAVE method within the
APLM framework. We discuss implementation, including local smoothing, bandwidth selec-
tion, and the iterative procedure for estimating the projection matrix.

3.1 Local smoothing and kernel weights

Suppose we have an independent and identically distributed sample {(Xi, Yi)}ni=1 from the
joint distribution of (X, Y ). Define gB(v1, . . . , vd) = E

[
Y | b>1 X = v1, . . . , b

>
dX = vd

]
,

where B =
(
b1, . . . , bd

)
is the projection matrix of size p × d. For any fixed point X0, we

can approximate the function E
[
Y | B>X = B>X0

]
using a local linear expansion.

In addition to the partially linear structure, suppose the model includes a nonparametric
term that can be expressed as

g(Z) = γ>b(Z), (3.7)

where b is a vector of known basis functions (for example, spline basis) and γ is a vector of
unknown coefficients. Then, for the i-th observation, g(Zi) = γ>b(Zi).

Hence, the difference Yi−gB

(
B>Xi

)
can be approximated by Yi−a− b>B>(Xi−X0)−

γ>B(Zi). Using a local linear smoothing framework, we fit (a, b) by minimizing the weighted
sum of squared residuals:

∑n
i=1(Yi− (a+ b>B>(Xi−X0) +γ>B(Zi)))2Wi0, where Wi0 ≥ 0

is a kernel weight centered around B>X0 such that
∑n
i=1 Wi0 = 1. Specifically, we get

Wi0 = Kh(B>(Xi −X0))∑n
`=1 Kh

(
B>(X` −X0)

) , (3.8)

with Kh(u) = h−dK(u/h) for a chosen kernel function K and bandwidth h > 0. Determining
h appropriately (for example, via cross-validation —CV—) is crucial to balancing bias and
variance in local linear estimation.
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To estimate (a, b) for each local neighborhood, we use the criterion implied by Equation
(2.4). Specifically, for a given B and a point B>X0, we approximate σ2

B

(
B>X0

)
—from

Equation (2.3)— via the formulation presented as

σ̂2
B

(
B>X0

)
= min

a,b

{
n∑
i=1

(
Yi − a− b>B>

(
Xi −X0

)
− γ>B

(
Zi
))

2Wi0

}
.

Under regular conditions, it holds that σ̂2
B

(
B>X0

)
≈ σ2

B

(
B>X0

)
= Op(1), where Op(1)

denotes a sequence of random variables that is bounded in probability, and p refers to the
dimension of the original covariate space.

Using Equations (2.2), (2.5), and (2.6), we can aggregate these local estimates to obtain
the objective given by

min
B:B>B=I


n∑
j=1

σ̂2
B

(
B>Xj

) =

min
B:B>B=I

aj ,bj ; j∈{1,...,n}


n∑
j=1

n∑
i=1

(
Yi − aj − b>j B>

(
Xi −Xj

)
− γ>B

(
Zi
))2

Wij

 ,
where b>j =

(
bj1, . . . , bjd

)
andK(z) = (1/

√
2π) exp(−z>z/2) denotes the multivariate Gaus-

sian kernel used in the definition of Wij stated in Equation (3.8). The optimal bandwidth
hopt = A(d)n

−1/(4+d), where A(d) = (4/(d+ 2))1/(4+d), is a commonly used rule-of-thumb for
local linear smoothing in d-dimensional settings. Correct bandwidth selection is crucial, as
it balances bias and variance in the local linear estimates. Several error metrics, such as the
average squared error or the integrated squared error, can guide the selection of h (Hmood
and Stadtmuller, 2013).

A common practical approach is CV, which balances squared bias and variance by leaving
out one observation at a time (the leave-one-out method) and choosing the bandwidth h
that minimizes a CV function, defined as

CV(h) = 1
n

n∑
i=1

(
Yi − m̂h,−i

(
Xi

))2
, (3.9)

where
m̂h,−i(Xi) =

∑
6̀=i
Wh,−i(X`)Y`

/∑
6̀=i
Wh,−i(X`), (3.10)

and Wh,−i denotes kernel weights computed without using observation i. Algorithm 3.1
outlines the leave-one-out CV procedure for selecting ĥ.

Algorithm 3.1: Cross-validation for bandwidth selection.
Input: A set of candidate bandwidths {h1, h2, . . . , hk} and a dataset {(Xi, Yi)}ni=1.

1: Iterate over each candidate bandwidth h:
1.1 Compute Wh,−i for observation i ∈ {1, . . . , n}, excluding case i, and calculate

m̂h,−i(Xi) using Equation (3.10).
1.2 Evaluate the CV(h) criterion utilizing Equation (3.9).

2: Select the optimal bandwidth ĥ = arg minh {CV(h)} .
Output: The optimal bandwidth ĥ.
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3.2 MAVE algorithm for APLMs

We now present the general MAVE procedure when combining a partially linear structure
with a nonparametric component of the form g(Z) = γ>b(z). In what follows, let B ∈
Rp×d denote the projection matrix we seek to estimate (subject to B>B = Id), and let
{(aj , bj)}nj=1 be local linear approximation parameters. The general MAVE procedure has
the following steps:
Step 1 —State a local MAVE criterion

Given B (and a provisional estimate γ̂ for the nonparametric term), we estimate (aj , bj)
for j ∈ {1, . . . , n} by solving the problem formulated as

min
B:B>B=I

aj ,bj ;j∈{1,...,n}


n∑
j=1

n∑
i=1

(
Yi − aj − b>j B>(Xi −Xj)− γ̂>b

(
Zi
))2

Wij

 . (3.11)

Here, Wij are kernel weights as defined in Equation (3.8) —or the relevant local weighting
scheme.
Step 2 —Update each direction

Once {(âj , b̂j)}nj=1 are obtained, we update each column bm of B (for m ∈ {1, . . . , d}) by
fixing all previously estimated directions b̂1, . . . , b̂m−1 and solving the problem stablished
as

min
bm;aj ,bj ;j∈{1,...,n}


n∑
j=1

n∑
i=1

(
Yi − âj − b̂>j

(
b̂1, . . . , b̂m−1, bm

)>(Xi −Xj)− γ̂>b
(
Zi
))2

Wij

 .
(3.12)

The iterative procedure for updating each column of the projection matrix B is outlined
in Algorithm 3.2. At each iteration, previously estimated directions are fixed, and the next
column is updated by minimizing the objective function defined in Equation (3.12).

Algorithm 3.2: Procedure for updating each column of the projection matrix B.
Input: A dataset {(Xi,Zi, Yi)}ni=1, an initial projection matrix B(0) ∈ Rp×d, tolerance
for convergence, and the dimension d.

1: Compute the nonparametric component g(Z) using Equation (3.7), and obtain an initial
estimate ĝ(Z) = γ̂>b(Z).

2: Initialize m = 1. Choose an arbitrary initial projection matrix B(0) ∈ Rp×d with or-
thonormal columns (for example, random or via SVD).

3: Perform local fitting. For each candidateB, estimate (aj , bj) for j ∈ {1, . . . , n} by solving
the minimization problem stated in Equation (3.11), subject to B>B = I. Store the
estimates (âj , b̂j).

4: Update the m-th column of B by minimizing Equation (3.12) utilizing (âj , b̂j). Denote
the solution by b̂m.

5: Replace the m-th column of B with b̂m. Repeat the local fitting and column update
(Steps 3–5) until convergence for this particular m.

6: Increment m← m+1. If m ≤ d, return to Step 3 to update the next column. Otherwise,
stop when all d directions are estimated, or use a suitable information criterion to
determine d.
Output: The optimal projection matrix B̂ ∈ Rp×d.
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In practice, Xia et al. (2014) suggested a multidimensional Nadaraya–Watson approach
for calculating the weights Wij . Namely, if B̂ is the current estimate of the projection matrix
(of size p× d), then we have

Wij =
Kh

(
B̂>(Xj −Xi)

)∑n
`=1 Kh

(
B̂>(X` −Xi)

) ,
where Kh is a smoothing kernel with bandwidth h. Although MAVE efficiently reduces
dimensionality, the resulting predictors remain linear combinations of the original covari-
ates. To enhance model parsimony and achieve simultaneous variable selection, one can
incorporate penalization techniques such as ALASSO or SCAD.

4. MAVE with adaptive penalization: ALASSO and SCAD

In this section, we introduce the use of adaptive penalization within the MAVE framework
to achieve both dimension reduction and variable selection. Specifically, we discuss the
ALASSO and SCAD, highlighting their integration with MAVE and their advantages in
constructing sparse, interpretable models.

4.1 MAVE-ALASSO method

ALASSO was originally introduced by Zou (2006) to mitigate certain drawbacks of the
standard LASSO, notably its bias toward larger coefficients and occasional inconsistency
in variable selection. In the MAVE framework, Hua et al. (2012) further developed an
ALASSO variant by adding adaptive weights to the penalization term, thereby improving
variable selection while preserving the efficiency of MAVE. Specifically, ALASSO assigns
distinct weights to each coefficient, overcoming the limitations of ordinary LASSO, which
uses a uniform penalty. As a result, ALASSO estimators can satisfy the so-called oracle
property, yielding consistent and unbiased estimates (Leng et al., 2009; Hua et al., 2012).

Formally, consider the penalized objective function given by

min
B

{
n∑
j=1

n∑
i=1

(
Yi − aj + b>j B

>(Xi −Xj

)
+ γ>b

(
Zi
))2

Wij + λ
d∑

m=1

p∑
t=1

wt
∣∣Bt,m

∣∣}, (4.13)

subject to B>B = Id, where:

• λ ≥ 0 is the penalty parameter controlling the shrinkage,
• wt = 1/|β̂OLS,t|θ are adaptive weights computed from an initial estimator —often ordinary

least squares (OLS)— for some θ > 0,
• p is the number of linear covariates,
• {(aj , bj)}nj=1 are the local linear approximation parameters for MAVE,
• γ>b(Zi) represents additional nonparametric spline components if needed,
• n is the sample size, d is the dimension of the reduction space,
• B = (b1, . . . , bd) is the projection matrix, and Bt,m is the t-th entry of the m-th column
bm.
The first term in Equation (4.13) is the MAVE least-squares criterion, while the second

term is the ALASSO penalty that simultaneously shrinks and selects coefficients. Under
suitable regularity conditions, this adaptive penalty can yield consistent variable selection
with minimal bias for large coefficients (Hmood and Saleh, 2016).



Chilean Journal of Statistics 133

Following the general MAVE framework, we now incorporate an adaptive LASSO penalty.
Recall that B ∈ Rp×d is our projection matrix (subject to B>B = Id), and let {(aj , bj)}nj=1
be local linear parameters as before. Suppose the nonparametric component of the APLM
stated in Equation (3.7). For a given B (and a provisional estimate γ̂), the local MAVE
criterion stated in Equation (3.11) can be written as

min
B:B>B=Id

aj ,bj ; j∈{1,...,n}


n∑
j=1

n∑
i=1

(
Yi − aj − b>j B>(Xi −Xj)− γ̂>b

(
Zi
))2

Wij

 . (4.14)

Once (âj , b̂j) are obtained, we penalize the projection coefficients in B via an adaptive
LASSO term stated in Equation (4.13). Specifically, for the m-th column bm of B, we have

min
B:B>B=Id

aj ,bj ; j∈{1,...,n}

{
n∑

j=1

n∑
i=1

(
Yi−âj−b̂>j (b̂1, . . . , b̂m−1, bm)>(Xi−Xj)−γ̂>b(Zi)

)2
Wij+λ

p∑
t=1

wt|bm,t|

}
,

(4.15)
where bm,t is the t-th component of the m-th column of B, λ ≥ 0 is the penalty parameter,
and wt are the adaptive weights.

Algorithm 4.1 details the implementation of MAVE-ALASSO. This procedure incorpo-
rates adaptive penalization into the MAVE framework, iteratively refining the projection
matrix B while balancing dimension reduction and variable selection through the use of
adaptive weights.

Algorithm 4.1: Implementation of the MAVE-ALASSO method.
Input: A dataset {(Xi,Zi, Yi)}ni=1, an initial projection matrix B(0) ∈ Rp×d, tolerance
for convergence, and the dimension d.

1: Compute the nonparametric component g(Z) as in Equation (3.7), and obtain an initial
estimate ĝ(Z) = γ̂>b(Z).

2: Initialize m = 1. Choose an arbitrary initial projection matrix B(0) ∈ Rp×d with or-
thonormal columns (for example, random or via SVD).

3: Perform the local MAVE step (unpenalized). For the current B, estimate (aj , bj) for
j ∈ {1, . . . , n} by solving the unpenalized MAVE problem stated in Equation (4.14).
Store the estimates (âj , b̂j).

4: Update the m-th column of B by minimizing the adaptive LASSO objective presented
in Equation (4.15) using (âj , b̂j). Denote the solution by b̂m,ALASSO.

5: Replace the m-th column of B with b̂m,ALASSO. Repeat the local MAVE step and the
ALASSO update (Steps 3–5) until convergence for this particular m.

6: Increment m← m+1. If m ≤ d, return to Step 3 to update the next column. Otherwise,
stop when all d directions are estimated, or use a suitable information criterion to
determine d.
Output: The optimal projection matrix B̂ ∈ Rp×d.

Remark 1

• In Step 3 of Algorithm 4.1, we solve Equation (4.14) without the penalty term to obtain
local linear fits (âj , b̂j).

• In Step 4 of Algorithm 4.1, we impose the ALASSO penalty formulated in Equation
(4.15) for the m-th direction. We typically cycle through m ∈ {1, . . . , d} repeatedly until
convergence.

• The weight wt can be derived from a pilot estimator such as OLS (with exponent θ > 0),
as in Zou (2006).
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4.2 MAVE-SCAD method

The MAVE framework is combined with the SCAD penalty to achieve both accurate esti-
mation and sparse variable selection (Fan and Li, 2001; Hmood and Saleh, 2016; Ahmed
and Hmood, 2021; Huda and Hmood, 2021). Specifically, let B ∈ Rp×d be the projection
matrix (with B>B = Id), and let {(aj , bj)}nj=1 be the local MAVE parameters as before.
Then, the penalized objective function becomes given by

min
B:B>B=Id

{
n∑
j=1

n∑
i=1

(
Yi−aj−b>j B>(Xi−Xj)−γ>b

(
Zi
))2

Wij+n
d∑

m=1

p∑
t=1

pSCAD,λ,a

(∣∣Bt,m

∣∣)},
(4.16)

where:

• λ ≥ 0 is the regularization parameter,
• a > 1 is the SCAD tuning constant (sometimes denoted by γ in the literature),
• pSCAD,λ,a is the SCAD penalty function given in Equation (4.17),
• p is the total number of linear covariates, and d is the dimension of the reduction space,
• Bt,m denotes the t-th entry in the m-th column of B,
• (aj , bj) are the local linear parameters in MAVE, and γ>b(Zi) is a possible spline-based

nonparametric component.
The first term in Equation (4.16) is the usual MAVE least-squares part, while the second

term introduces the SCAD penalty scaled by n. This scaling helps to control model com-
plexity while preserving larger coefficients, thanks to the reduced shrinkage imposed by the
SCAD form for values exceeding aλ.

Fan and Li (2001) proposed the SCAD penalty stated as

pSCAD,λ,a

(
|x|
)

=



λ|x|, if 0 ≤ |x| < λ;(
a2 − 1

)
λ2 −

(
|x| − aλ

)2
2(a− 1) , if λ ≤ |x| < aλ;

(a+ 1)λ2

2 , if |x| ≥ aλ.

(4.17)

SCAD achieves oracle-like properties by penalizing small coefficients heavily while leaving
large coefficients almost unshrunk once |x| > aλ. This facilitates both consistent variable
selection and reduced bias for relevant covariates (Huang et al., 2008; Huda and Hmood,
2021).

Following the same rationale as MAVE-ALASSO, we now incorporate the SCAD penalty
into the MAVE framework to enable sparse estimation of the projection matrix B ∈ Rp×d.
Let {(aj , bj)}nj=1 be local linear parameters. Suppose again that a nonparametric component
is given in Equation (3.7).

As in previously stated, for a given B (and estimate γ̂ of the nonparametric term), we
solve the unpenalized local MAVE objective, given by

min
B:B>B=Id

aj ,bj ;j∈{1,...,n}

n∑
j=1

n∑
i=1

(
Yi − aj − b>j B>(Xi −Xj)− γ̂>b(Zi)

)2
Wij . (4.18)
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Once (âj , b̂j) are obtained, we introduce the SCAD penalty term presented in Equation
(4.16) for the m-th column bm of B. Specifically, we have

min
B:B>B=Id

aj ,bj ;j∈{1,...,n}

{
n∑
j=1

n∑
i=1

(
Yi − âj − b̂>j

(
b̂1, . . . , b̂m−1, bm

)>(Xi −Xj)− γ̂>b(Zi)
)2
Wij (4.19)

+n
p∑
t=1

pSCAD,λ,a

(
|bm,t|

)}
,

where bm,t is the t-th entry of the m-th column bm and pSCAD,λ,a is the SCAD penalty
defined in Equation (4.17).

The steps for integrating the SCAD penalty into the MAVE framework are provided in
Algorithm 4.2. This integration achieves sparse estimation of the projection matrix B by
iteratively applying penalized regression techniques as stated in Equation (4.17).

Algorithm 4.2: Integration of SCAD penalty into the MAVE method.
Input: A dataset {(Xi,Zi, Yi)}ni=1, an initial projection matrix B(0) ∈ Rp×d, tolerance
for convergence, and the dimension d.

1: Compute the nonparametric component g(Z) defined in Equation (3.7), and obtain an
initial estimate ĝ(Z) = γ̂>b(Z).

2: Initialize m = 1. Choose an arbitrary initial projection matrix B(0) ∈ Rp×d with or-
thonormal columns (for example, random or via SVD).

3: Perform the local MAVE step (unpenalized). For the current B, estimate (aj , bj) for
j ∈ {1, . . . , n} by solving the unpenalized MAVE problem stated in Equation (4.18).
Store the estimates (âj , b̂j).

4: Update the m-th column of B by minimizing the SCAD-penalized objective presented
in Equation (4.19) using (âj , b̂j). Denote the solution by b̂m,SCAD.

5: Replace the m-th column of B with b̂m,SCAD. Repeat the local MAVE step and the
SCAD update (Steps 3–5) until convergence for this particular m.

6: Increment m← m+1. If m < d, return to Step 3 to update the next column. Otherwise,
stop when all d directions are estimated, or use a criterion to select d.
Output: The optimal projection matrix B̂ ∈ Rp×d.

Remark 2

• The choice of (λ, a) strongly influences sparsity and shrinkage; these can be selected by
CV or a model selection criterion.

• The factor n multiplying the SCAD penalty stated in Equation (4.19) is a scaling con-
vention ensuring that the penalty remains comparable to the sum of squared residuals.

• SCAD exerts less shrinkage on large coefficients, mitigating the bias inherent in standard
LASSO methods while still performing effective variable selection.

4.3 Performance evaluation criteria

Several criteria can be used to assess the performance of regression function estimators in
APLMs. Following Li et al. (2018), we adopt the following three measures:

(i) The mean average squared error (MASE) is defined for an estimator Ŷi of Yi as
MASE = (1/n)E(

∑n
i=1(Yi − Ŷi)2). In practice, this is typically approximated by the

sample mean of the squared residuals.
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(ii) Criterion C represents the number of truly zero coefficients that are correctly identified
as zero. A higher value of C indicates better detection of irrelevant variables, leading
to more accurate sparse estimation (Horowitz, 2015).

(iii) Criterion I quantifies the number of truly nonzero coefficients that are incorrectly
estimated as zero (false zeros). A smaller value of I reflects fewer omitted relevant
variables, reducing the rate of type-II errors in variable selection (Horowitz, 2015;
Cook and Forzani, 2018).

5. Simulation study

In this section, we evaluate the finite-sample performance of the proposed methods, MAVE-
ALASSO and MAVE-SCAD, through an extensive Monte Carlo simulation study. The re-
sults highlight the trade-offs between sparsity and prediction accuracy under varying con-
ditions.

5.1 Simulation setup

We investigate the finite-sample performance of our proposed methods via Monte Carlo
simulations. All computations were carried out in the R environment using the functions
mave, bs, cv.glmnet, and ncvreg (R Core Team, 2024). The simulations were performed
on an Intel(R) Core(TM) i5-6200U CPU, 64-bit operating system.

We consider the APLM from Equation (2.1) with k = 2 nonlinear components,
where the two nonparametric functions are given by g1(Z1) = 8 cos

(
7πZ1

)
, g2(Z2) =

30
(
exp(−4.75Z2) − 2 exp(−8.1Z2) + 5 exp(−3.25Z2)

)
. We assume there are p = 60 lin-

ear covariates, plus two nonlinear variables (Z1,Z2). The unknown parameter vector is
β =

(
2, 1.2, 0.8,−0.9, 1.7, 3, 5.1,−6.1, 4.2,−2.1, 0, . . . , 0, 1.3,−1.7, 1.9, 3.2,−3.1

)
, where the

remaining coefficients (beyond those explicitly listed) are set to zero to reflect true spar-
sity. The error term ε is independently drawn from a standard normal distribution with
variance σ2, where σ ∈ {1, 2, 6}. The covariates X are sampled from a multivariate normal
distribution with correlation ρ|i−j|, for ρ ∈ {0.3, 0.5, 0.8}. Meanwhile, Z1 and Z2 are drawn
independently from a uniform distribution on [0, 1]. Cubic B-splines are used to approximate
g1 and g2, varying the number of internal knots from 2 to 10.

5.2 Design factors and summary of findings

We replicate each scenario 1000 times, considering sample sizes n ∈ {20, 50, 100, 150}. We
then estimate the model using both MAVE-ALASSO and MAVE-SCAD, evaluating their
performance via MASE, C, and I. Tables 1–9 report these results across different values of
ρ ∈ {0.3, 0.5, 0.8} and σ ∈ {1, 2, 6}.

Next, we summarize our simulation findings:

• Sample size effect —As n increases, both MAVE-ALASSO and MAVE-SCAD exhibit
improvements in MASE (lower errors), higher C (better identification of zero coefficients),
and lower I (fewer falsely omitted variables). For small n = 20, the results can be more
variable.

• Comparison of MAVE-ALASSO versus MAVE-SCAD.
— Overall, MAVE-SCAD tends to yield smaller MASE and lower I (fewer false zeros) for

larger sample sizes and higher dimensionality/nonlinearity.
— Conversely, MAVE-ALASSO often attains slightly larger C, indicating stronger detec-

tion of truly zero coefficients, which can be advantageous with smaller sample sizes or
when variable selection is paramount.
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• Influence of ρ and σ —Higher correlation (ρ = 0.8) and larger noise levels (σ = 6)
naturally increase estimation challenges. Nonetheless, both methods remain reasonably
robust, with MAVE-SCAD often preserving accuracy due to its less-aggressive shrinkage
on large coefficients.

Hence, MAVE-SCAD appears preferable for large-scale problems or highly complex models,
thanks to its balance between sparsity and reduced shrinkage bias. In addition, MAVE-
ALASSO may be more appealing for small or moderate sample sizes, as it can more reliably
retain zero coefficients at the expense of a slight increase in estimation bias for nonzero
coefficients.

Table 1. MASE, C and I with n = 20, 50, 100, 150, ρ = 0.3, σ = 1 and p = 60.

n Methods C I MASE Best method

20 MAVE-ALASSO 40.883 6.265 3.6888 MAVE-SCADMAVE-SCAD 42.768 5.171 3.3863

50 MAVE-ALASSO 41.292 5.695 3.3535 MAVE-SCADMAVE-SCAD 43.196 4.701 3.0785

100 MAVE-ALASSO 41.705 5.178 3.0486 MAVE-SCADMAVE-SCAD 43.628 4.274 2.7986

150 MAVE-ALASSO 42.122 4.707 2.7715 MAVE-SCADMAVE-SCAD 44.064 3.885 2.5442

Table 2. MASE, C and I with n = 20, 50, 100, 150, ρ = 0.5, σ = 1 and p = 60.

n Methods C I MASE Best method

20 MAVE-ALASSO 41.688 5.472 3.2705 MAVE-ALASSOMAVE-SCAD 41.077 5.968 3.3521

50 MAVE-ALASSO 42.240 3.862 2.2117 MAVE-ALASSOMAVE-SCAD 41.636 4.424 2.2668

100 MAVE-ALASSO 42.049 3.128 2.1150 MAVE-SCADMAVE-SCAD 42.660 2.731 2.0635

150 MAVE-ALASSO 42.171 2.043 1.2815 MAVE-SCADMAVE-SCAD 44.064 3.885 2.5442

Table 3. MASE, C and I with n = 20, 50, 100, 150, ρ = 0.8, σ = 1 and p = 60.

n Methods C I MASE Best method

20 MAVE-ALASSO 37.356 6.511 3.6893 MAVE-ALASSOMAVE-SCAD 37.216 6.659 3.7402

50 MAVE-ALASSO 38.119 5.861 3.3203 MAVE-ALASSOMAVE-SCAD 37.975 5.993 3.3662

100 MAVE-ALASSO 38.504 4.689 2.6563 MAVE-SCADMAVE-SCAD 38.358 4.494 2.5246

150 MAVE-ALASSO 38.542 3.516 1.9921 MAVE-ALASSOMAVE-SCAD 38.746 3.371 1.8935
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Table 4. MASE, C and I with n = 20, 50, 100, 150, ρ = 0.3, σ = 2 and p = 60.
n Methods C I MASE Best method
20 MAVE-ALASSO 40.731 5.223 3.4202 MAVE-ALASSOMAVE-SCAD 38.936 6.328 3.7257

50 MAVE-ALASSO 41.139 4.748 3.1092 MAVE-ALASSOMAVE-SCAD 39.326 5.752 3.3870

100 MAVE-ALASSO 41.550 4.316 2.8266 MAVE-ALASSOMAVE-SCAD 39.719 5.229 3.0791

150 MAVE-ALASSO 41.966 3.924 2.5696 MAVE-ALASSOMAVE-SCAD 40.116 4.754 2.7992

Table 5. MASE, C and I with n = 20, 50, 100, 150, ρ = 0.5, σ = 2 and p = 60.
n Methods C I MASE Best method

20 MAVE-ALASSO 41.146 5.544 3.3136 MAVE-ALASSOMAVE-SCAD 40.543 6.047 3.3963

50 MAVE-ALASSO 41.691 3.912 2.2407 MAVE-ALASSOMAVE-SCAD 41.095 4.482 2.2967

100 MAVE-ALASSO 41.503 3.169 2.1429 MAVE-SCADMAVE-SCAD 42.106 2.766 2.0907

150 MAVE-ALASSO 41.623 2.070 1.2984 MAVE-SCADMAVE-SCAD 42.213 1.807 1.2666

Table 6. MASE, C and I with n = 20, 50, 100, 150, ρ = 0.8, σ = 2 and p = 60.
n Methods C I MASE Best method

20 MAVE-ALASSO 36.609 6.645 4.0541 MAVE-ALASSOMAVE-SCAD 36.471 6.794 4.1101

50 MAVE-ALASSO 37.356 5.980 3.6487 MAVE-ALASSOMAVE-SCAD 37.216 6.115 3.6991

100 MAVE-ALASSO 37.734 4.784 2.9190 MAVE-SCADMAVE-SCAD 37.591 4.587 2.7743

150 MAVE-ALASSO 37.771 3.588 2.1893 MAVE-SCADMAVE-SCAD 37.971 3.440 2.0807

Table 7. MASE, C and I with n = 20, 50, 100, 150, ρ = 0.3, σ = 6 and p = 60.
n Methods C I MASE Best method

20 MAVE-ALASSO 39.970 5.430 3.5556 MAVE-ALASSO
MAVE-SCAD 38.208 6.578 3.8732

50 MAVE-ALASSO 40.370 4.936 3.2324 MAVE-ALASSOMAVE-SCAD 38.590 5.980 3.5211

100 MAVE-ALASSO 40.773 4.487 2.9385 MAVE-ALASSO
MAVE-SCAD 38.976 5.437 3.2010

150 MAVE-ALASSO 41.181 4.079 2.6714 MAVE-ALASSOMAVE-SCAD 39.366 4.942 2.9100
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Table 8. MASE, C and I with n = 20, 50, 100, 150, ρ = 0.5, σ = 6 and p = 60.

n Methods C I MASE Best method

20 MAVE-ALASSO 40.611 5.991 3.3572 MAVE-ALASSOMAVE-SCAD 40.017 6.126 3.4409

50 MAVE-ALASSO 41.149 3.964 2.2703 MAVE-ALASSOMAVE-SCAD 40.560 4.541 2.3269

100 MAVE-ALASSO 40.963 3.210 2.1711 MAVE-SCADMAVE-SCAD 41.558 2.803 2.1181

150 MAVE-ALASSO 41.082 2.097 1.3155 MAVE-SCADMAVE-SCAD 41.664 1.830 1.2834

Table 9. MASE, C and I with n = 20, 50, 100, 150, ρ = 0.8, σ = 6 and p = 60.

n Methods C I MASE Best method

20 MAVE-ALASSO 35.877 6.780 4.4550 MAVE-ALASSOMAVE-SCAD 35.742 6.934 4.5165

50 MAVE-ALASSO 36.609 6.102 4.0095 MAVE-ALASSO
MAVE-SCAD 36.471 6.240 4.0649

100 MAVE-ALASSO 36.979 4.881 3.2077 MAVE-SCADMAVE-SCAD 36.840 4.680 3.0487

150 MAVE-ALASSO 37.016 3.662 2.4057 MAVE-SCADMAVE-SCAD 37.212 3.510 2.2865

6. Application with real-world data

This section provides an application with real-world data.

6.1 Description of the data

The dataset used for this study corresponds to financial data from the Baghdad Soft Drinks
Company, a commercial enterprise listed on the Iraqi Stock Exchange. It spans the period
from 2015 to 2022, with four observations (quarters) per year, totaling 32 data points. This
dataset provides a unique opportunity to evaluate the performance of MAVE-ALASSO and
MAVE-SCAD in a real-world context characterized by high-dimensionality and potential
nonlinear relationships.

The covariates include 45 linear predictors and 2 nonlinear predictors, capturing diverse
aspects of financial performance and operational characteristics. These variables are detailed
next, which provides their descriptions and roles in the analysis. The response variable, Y ,
represents the company stock market value.

Both MAVE-ALASSO and MAVE-SCAD were implemented in the statistical software R
using the procedures and algorithms outlined in Sections 3 and 4. Specifically, the itera-
tive algorithms described in Algorithm 4.1 (for MAVE-ALASSO) and Algorithm 4.2 (for
MAVE-SCAD) were employed to estimate the projection matrix B and identify the most
relevant covariates. By integrating adaptive penalization with SDR, these methods balance
interpretability and accuracy, making them well-suited for high-dimensional data.
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Next, we describe the variables included in the real-data application:

• Y — stock market value (response)
• Z1 — dividend distribution
• Z2 — operating cash flow
• X1 — financial leverage
• X2 — return on assets
• X3 — sales growth rate
• X4 — annual growth rate
• X5 — company size
• X6 — liquidity ratios
• X7 — investment spending
• X8 — issuance of new stocks
• X9 — net working capital
• X10 — accounts receivable turnover
• X11 — average collection period
• X12 — inventory turnover
• X13 — average age of inventory
• X14 — operating cycle
• X15 — payable turnover
• X16 — payable turnover in days
• X17 — fixed asset turnover
• X18 — total asset turnover
• X19 — debt ratio
• X20 — leverage ratio
• X21 — debt/equity ratio
• X22 — times interest earned
• X23 — return on common equity
• X24 — return on total assets
• X25 — return on investment
• X26 — gross profit margin
• X27 — profit margin
• X28 — earnings per stock
• X29 — price/earnings ratio
• X30 — dividend yield
• X31 — dividend payout ratio
• X32 — book value of stock
• X33 — indebtedness ratio
• X34 — ratio of total liabilities to total assets
• X35 — ratio of total assets to equity
• X36 — ratio of liabilities to equity
• X37 — rate of interest coverage
• X38 — return on equity
• X39 — return on invested money
• X40 — total profit to sales
• X41 — earnings per share
• X42 — profitable repeater
• X43 — cash earnings per share
• X44 — cash distribution ratio
• X45 — book value per share
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6.2 Results of variable selection

Table 10 summarizes the variable selection process using MAVE-ALASSO and MAVE-
SCAD methods. This table includes estimates for all variables analyzed, offering additional
numeric details compared to the results presented in the main text.

Table 10. Results of variable selection for MAVE-ALASSO and MAVE-SCAD methods with real-world
data.

j
MAVE-ALASSO MAVE-SCAD

j
MAVE-ALASSO MAVE-SCAD

βj βj βj βj

1 1.0242 1.4106 2 0.1392 0.5341
3 Removed Removed 4 Removed 0.5026
5 0.4344 0.3495 6 0.4787 0.8699
7 Removed Removed 8 0.1728 0.2756
9 Removed Removed 10 -0.6551 -0.8308
11 0.3801 0.2966 12 Removed Removed
13 0.5753 0.7112 14 -0.4036 -0.1944
15 Removed Removed 16 0.876 0.6237
17 Removed -1.2874 18 -0.4936 -0.6638
19 Removed Removed 20 Removed 0.5516
21 0.2965 0.4072 22 0.7665 0.9136
23 -0.2759 -0.4491 24 Removed Removed
25 -0.305 -0.3576 26 Removed Removed
27 Removed Removed 28 3.5736 2.9314
29 Removed Removed 30 Removed Removed
31 Removed Removed 32 Removed Removed
33 Removed Removed 34 Removed Removed
35 Removed Removed 36 Removed Removed
37 Removed Removed 38 Removed Removed
39 Removed 1.1302 40 Removed Removed
41 Removed -1.6994 42 Removed Removed
43 Removed Removed 44 Removed Removed
45 Removed Removed 46 -0.5728 Removed
47 0.649 0.7817

The results of the variable selection process are summarized in Table 11, which lists the
variables retained (βj 6= 0) and removed by each method. These results are based on the
APLM framework described in Section 2. MAVE-ALASSO and MAVE-SCAD were both
effective in identifying a subset of predictors that explain the variability in Y , with some
differences in the number and type of variables selected.

Remark 3 “Retained” indicates that the corresponding coefficient was nonzero; “Removed”
indicates a zero (or negligible) estimate. Variables with indices j beyond the original range
may represent nonlinear components or interactions derived from the APLM framework.
For a comprehensive list of all variables and their estimates from MAVE-ALASSO and
MAVE-SCAD, refer to Table 10.
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Table 11. Variables selected by MAVE-ALASSO and MAVE-SCAD for modeling Y with real-world data.

j
MAVE-ALASSO

j
MAVE-SCAD

βj Status βj Status
1 1.0242 Retained 2 0.5341 Retained
3 – Removed 4 0.5026 Retained
5 0.4344 Retained 6 0.8699 Retained
7 – Removed 8 0.2756 Retained
10 -0.6551 Retained 11 0.2966 Retained
13 0.5753 Retained 14 -0.1944 Retained
16 0.876 Retained 17 -1.2874 Retained
18 -0.4936 Retained 20 0.5516 Retained
21 0.2965 Retained 22 0.9136 Retained
23 -0.2759 Retained 25 -0.3576 Retained
28 3.5736 Retained 39 1.1302 Retained
41 – Removed 46 -0.5728 Retained
47 0.649 Retained 41 -1.6994 Retained

6.3 Comparison of methods

Next, we examine the performance of MAVE-ALASSO and MAVE-SCAD through metrics
such as MSE, percent error (PE), and the coefficient of determination (R2), highlighting the
trade-offs between sparsity and predictive accuracy.

Table 12 summarizes the results for the real-data application. While both methods achieve
high R2 values (indicating that the selected variables explain a substantial portion of the
variability in Y ), MAVE-ALASSO retains fewer variables, resulting in a more parsimonious
model. In contrast, MAVE-SCAD selects a slightly larger set of predictors but offers similar
predictive performance.

Table 12. Comparison of MAVE-ALASSO and MAVE-SCAD with real-world data.

Method MSE PE (%) R2

MAVE-ALASSO 0.0808 2.5854 91.66%
MAVE-SCAD 0.0825 2.6392 91.49%

6.4 Discussion

Next, we discuss some key aspects identified in our real-data application:

• Overall fit —Both methods demonstrate high predictive accuracy, with R2 values exceed-
ing 91%. This suggests that the APLM framework, combined with adaptive penalization,
is effective for capturing key patterns in the data.

• Sparsity and interpretability —MAVE-ALASSO achieves greater sparsity by selecting 18
variables, which may be preferable when model interpretability and parsimony are critical.

• Comprehensive selection —MAVE-SCAD retains 22 variables, offering a comprehensive
set of predictors. This may be advantageous when the goal is to ensure that potentially
important variables are not omitted, albeit at the cost of a slightly larger model.
In summary, MAVE-ALASSO is advantageous for applications requiring a more concise

and interpretable model, while MAVE-SCAD provides a broader perspective on potential
predictors with comparable accuracy. The choice between the two methods ultimately de-
pends on the specific priorities of the analysis, such as parsimony versus coverage of relevant
variables.
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7. Conclusions

The findings from our simulation study demonstrate that the minimum average variance
estimation with adaptive least absolute shrinkage and selection operator (MAVE-ALASSO)
exhibits a clear advantage for smaller or moderate sample sizes, particularly under condi-
tions of low to moderate correlation and variance. Conversely, for larger sample sizes and
scenarios where correlations are intermediate to high (such as ρ = 0.5 or 0.8), the minimum
average variance estimation with smoothly clipped absolute deviation (MAVE-SCAD) gen-
erally outperforms MAVE-ALASSO. These results highlight the complementary strengths
of the two methods and their applicability under different settings.

The real-data application, based on financial data from the Baghdad Soft Drinks Com-
pany, further illustrates the utility of these methods in a practical context. In this case,
MAVE-ALASSO provided a marginally better fit than MAVE-SCAD, achieving slightly
lower mean squared error and percent error, as well as a higher coefficient of determina-
tion. Several key predictors of market value were identified, including variables related to
dividend distribution, operating cash flow, sales and annual growth rates, liquidity ratios,
net working capital, and several financial leverage and profitability measures. These findings
underscore the potential of MAVE-ALASSO to yield parsimonious and interpretable models
that can inform managerial decision-making and financial forecasting.

Despite these promising results, the study is not without limitations. The conclusions
drawn from the simulations are based on specific settings, including sample sizes, correlation
structures, and error variances. While these scenarios were designed to represent a range of
practical situations, caution is needed when generalizing to other contexts.

Similarly, the real-data application is limited to a single company operating in a specific
financial market, and different data characteristics in other contexts may influence model
performance. Additionally, the results may be sensitive to methodological choices such as
bandwidth selection, spline basis construction, and tuning parameter values for ALASSO
and SCAD. Future work could explore more refined or adaptive strategies for selecting these
parameters to further enhance the robustness of the methods.

Building on the insights gained from this work, several directions for future research are
apparent. Extending the use of MAVE-ALASSO and MAVE-SCAD to other semiparamet-
ric or high-dimensional regression models, such as partially linear single-index models or
generalized additive models, could provide additional applications.

Developing robust variants of MAVE that account for outliers or heavy-tailed error dis-
tributions would further broaden its utility in practical settings. Moreover, incorporating
advanced regularization techniques, such as MCP or elastic net, into the MAVE frame-
work could enhance its capacity for variable selection in challenging datasets. Applying
these methods to more complex data structures, such as multiresponse or longitudinal data,
represents a promising avenue for extending the theoretical and practical contributions of
MAVE-ALASSO and MAVE-SCAD.

In conclusion, this study demonstrates the flexibility and effectiveness of integrating min-
imum average variance estimation with adaptive penalization techniques for dimension re-
duction and variable selection in semiparametric modeling. The complementary strengths of
MAVE-ALASSO and MAVE-SCAD, coupled with their strong theoretical foundations and
practical performance, pave the way for further methodological advancements and applica-
tions in high-dimensional data analysis.
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