Fibrewise topological spaces theory is a relatively new branch of mathematics, less than three decades old, arisen from algebraic topology. It is a highly useful tool and played a pivotal role in homotopy theory. Fibrewise topological spaces theory has a broad range of applications in many sorts of mathematical study such as Lie groups, differential geometry and dynamical systems theory. Moreover, one of the main objects, which is considered in fibrewise topological spaces theory is connectedness. In this regard, we of the present study introduce the concept of connected fibrewise topological spaces and study their main results.
The formal integration of the interior spaces in general and the commercial spaces of the watch shops in the large commercial centers in particular is the goal that the designers aim to reach in order for the interior space to become successful in terms of the design idea and its characteristics. Implementation mechanism. One of the reasons for achieving formal integration in the interior spaces of watch shops is the requirements of the design that must be available in these spaces to reach a state of formal integration between the interior and the exterior so that the space becomes fully integrated in all respects. Because of the aforementioned reasons for dealing with the research, through four chapters: The first chapter included the
... Show MoreIn this paper, we proved coincidence points theorems for two pairs mappings which are defined on nonempty subset in metric spaces by using condition (1.1). As application, we established a unique common fixed points theorems for these mappings by using the concept weakly compatible (R-weakly commuting) between these mappings.
Let be any group with identity element (e) . A subgroup intersection graph of a subset is the Graph with V ( ) = - e and two separate peaks c and d contiguous for c and d if and only if , Where is a Periodic subset of resulting from . We find some topological indicators in this paper and Multi-border (Hosoya and Schultz) of , where , is aprime number.
In this paper, some new types of regularity axioms, namely pairwise quasi-regular, pairwise semi-regular, pairwise pseudo regular and pairwise regular are defined and studied in both ech fuzzy soft bi-closure spaces ( bicsp’s) and their induced fuzzy soft bitopological spaces. We also study the relationships between them. We show that in all these types of axioms, the hereditary property is satisfied under closed fs bi-csubsp of . Furthermore, we define some normality axioms, namely pairwise semi-normal, pairwise pseudo normal, pairwise normal and pairwise completely normal in both bicsp’s and their induced fuzzy soft bitopological spaces, as well as their basic properties and the relationships between them are studied.
... Show MoreIn this paper reliable computational methods (RCMs) based on the monomial stan-dard polynomials have been executed to solve the problem of Jeffery-Hamel flow (JHF). In addition, convenient base functions, namely Bernoulli, Euler and Laguerre polynomials, have been used to enhance the reliability of the computational methods. Using such functions turns the problem into a set of solvable nonlinear algebraic system that MathematicaⓇ12 can solve. The JHF problem has been solved with the help of Improved Reliable Computational Methods (I-RCMs), and a review of the methods has been given. Also, published facts are used to make comparisons. As further evidence of the accuracy and dependability of the proposed methods, the maximum error remainder
... Show MoreThe theory of general topology view for continuous mappings is general version and is applied for topological graph theory. Separation axioms can be regard as tools for distinguishing objects in information systems. Rough theory is one of map the topology to uncertainty. The aim of this work is to presented graph, continuity, separation properties and rough set to put a new approaches for uncertainty. For the introduce of various levels of approximations, we introduce several levels of continuity and separation axioms on graphs in Gm-closure approximation spaces.
The current research deals with the study of aesthetic relations in the field of interior design and the extent to which its mechanisms achieve sensory stimulation between the internal and external spaces, to generate a continuous visual connection that is an extension of it, achieving in turn sensory stimulation for the users of those spaces. The internal and external spaces meet the desired purpose of feeling pleasure and beauty.” The current research aims to “discover the nature of aesthetic relations between the internal and external spaces and the extent to which mechanisms can achieve sensory stimulation in residential spaces.” The first topic included the concept of aesthetic relations, sensory excitement, and perception at
... Show MoreSome researchers are interested in using the flexible and applicable properties of quadratic functions as activation functions for FNNs. We study the essential approximation rate of any Lebesgue-integrable monotone function by a neural network of quadratic activation functions. The simultaneous degree of essential approximation is also studied. Both estimates are proved to be within the second order of modulus of smoothness.
The design of the interior spaces process the product of intellectual civilization expresses the prevailing thought, discoverers of principles and beliefs through the sheen reflects the present, and generating languages graphical variety caused a different revolution in design mounting structure, and because of the complex nature of the interior spaces were and we have to be a reflection of cultural reality of being a form of cultural expression and true embodiment of scientific developments prevailing for each stage where she was born, the changes occurring in human thought and then extremism and the discrepancy tastes among individuals all communities factors have caused a change in the design structure involving modernization an
... Show More