Let R be a commutative ring with identity 1 ¹ 0, and let M be a unitary left module over R. A submodule N of an R-module M is called essential, if whenever N ⋂ L = (0), then L = (0) for every submodule L of M. In this case, we write N ≤e M. An R-module M is called extending, if every submodule of M is an essential in a direct summand of M. A submodule N of an R-module M is called semi-essential (denoted by N ≤sem M), if N ∩ P ≠ (0) for each nonzero prime submodule P of M. The main purpose of this work is to determine and study two new concepts (up to our knowledge) which are St-closed submodules and semi-extending modules. St-closed submodules is contained properly in the class of closed submodules, where a submodule N of M is called St-closed in M, if N has no proper semi-essential extension in M, i.e if there exists a submodule K of M such that N is a semi-essential submodule of K, then N = K. We investigate the main properties of this type of submodules, and discuss some results that are useful in our work. The class of semi-extending modules is a generalization to the notion of extending modules, where an R-module M is called semi-extending, if every submodule of M is a semi-essential in a direct summand of M. Various properties of semi-extending modules are obtained, and we study the relationships between this class of modules and other related concepts.
The main purpose of this paper is to study feebly open and feebly closed mappings and we proved several results about that by using some concepts of topological feebly open and feebly closed sets , semi open (- closed ) set , gs-(sg-) closed set and composition of mappings.
In this paper the full stable Banach gamma-algebra modules, fully stable Banach gamma-algebra modules relative to ideal are introduced. Some properties and characterizations of these classes of full stability are studied.
Abstract In this work we introduce the concept of approximately regular ring as generalizations of regular ring, and the sense of a Z- approximately regular module as generalizations of Z- regular module. We give many result about this concept.
In this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules. We also give some results and properties of this new kind of modules.
The genic variation analysis of Pseudomonas aeruginosa after filtering the spurious variation appeared that 222 variable loci out of 5572 loci were detected. The type of variation analysis revealed that single nucleotide polymorphism was highly significant compared with other types of variation due the fact that the genome variation was achieved on the level of microevolution. Moreover, the proportional effect of functional scheme showed that genes responsible for environmental information were the highest comparable to another scheme. The genes of environmental information processing locate on outer membrane and face the defense strategy of the host therefore change in proteins coded by these genes lead to escape the immune system defense
... Show MoreAstronomers have known since the invention of the telescope that atmospheric turbulence affects celestial images. So, in order to compensate for the atmospheric aberrations of the observed wavefront, an Adaptive Optics (AO) system has been introduced. The AO can be arranged into two systems: closedloop and open-loop systems. The aim of this paper is to model and compare the performance of both AO loop systems by using one of the most recent Adaptive Optics simulation tools, the Objected-Oriented Matlab Adaptive Optics (OOMAO). Then assess the performance of closed and open loop systems by their capabilities to compensate for wavefront aberrations and improve image quality, also their effect by the observed optical bands (near-infrared band
... Show Morehe concept of small monoform module was introduced by Hadi and Marhun, where a module U is called small monoform if for each non-zero submodule V of U and for every non-zero homomorphism f ∈ Hom R (V, U), implies that ker f is small submodule of V. In this paper the author dualizes this concept; she calls it co-small monoform module. Many fundamental properties of co-small monoform module are given. Partial characterization of co-small monoform module is established. Also, the author dualizes the concept of small quasi-Dedekind modules which given by Hadi and Ghawi. She show that co-small monoform is contained properly in the class of the dual of small quasi-Dedekind modules. Furthermore, some subclasses of co-small monoform are investiga
... Show MoreLet R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that