Let R be a commutative ring with identity 1 ¹ 0, and let M be a unitary left module over R. A submodule N of an R-module M is called essential, if whenever N ⋂ L = (0), then L = (0) for every submodule L of M. In this case, we write N ≤e M. An R-module M is called extending, if every submodule of M is an essential in a direct summand of M. A submodule N of an R-module M is called semi-essential (denoted by N ≤sem M), if N ∩ P ≠ (0) for each nonzero prime submodule P of M. The main purpose of this work is to determine and study two new concepts (up to our knowledge) which are St-closed submodules and semi-extending modules. St-closed submodules is contained properly in the class of closed submodules, where a submodule N of M is called St-closed in M, if N has no proper semi-essential extension in M, i.e if there exists a submodule K of M such that N is a semi-essential submodule of K, then N = K. We investigate the main properties of this type of submodules, and discuss some results that are useful in our work. The class of semi-extending modules is a generalization to the notion of extending modules, where an R-module M is called semi-extending, if every submodule of M is a semi-essential in a direct summand of M. Various properties of semi-extending modules are obtained, and we study the relationships between this class of modules and other related concepts.
Let R be a commutative ring with identity, and let M be a unitary left R-module. M is called special selfgenerator or weak multiplication module if for each cyclic submodule Ra of M (equivalently, for each submodule N of M) there exists a family {fi} of endomorphism of M such that Ra = ∑_i▒f_i (M) (equivalently N = ∑_i▒f_i (M)). In this paper we introduce a class of modules properly contained in selfgenerator modules called special selfgenerator modules, and we study some of properties of these modules.
Let R be a commutative ring with identity, and let M be a unitary left R-module. M is called Z-regular if every cyclic submodule (equivalently every finitely generated) is projective and direct summand. And a module M is F-regular if every submodule of M is pure. In this paper we study a class of modules lies between Z-regular and F-regular module, we call these modules regular modules.
Let R be a commutative ring with unity. In this paper we introduce and study fuzzy distributive modules and fuzzy arithmetical rings as generalizations of (ordinary) distributive modules and arithmetical ring. We give some basic properties about these concepts.
Suppose that A be an abelain ring with identity, B be a unitary (left) A-module, in this paper ,we introduce a type of modules ,namely Quasi-semiprime A-module, whenever is a Prime Ideal For proper submodule N of B,then B is called Quasi-semiprime module ,which is a Generalization of Quasi-Prime A-module,whenever annAN is a prime ideal for proper submodule N of B,then B is Quasi-prime module .A comprchensive study of these modules is given,and we study the Relationship between quasi-semiprime module and quasi-prime .We put the codition coprime over cosemiprime ring for the two cocept quasi-prime module and quasi-semiprime module are equavelant.and the cocept of prime module and quasi
... Show More In this paper we introduce the notion of semiprime fuzzy module as a generalization of semiprime module. We investigate several characterizations and properties of this concept.
In this work, the fractional damped Burger's equation (FDBE) formula = 0,
Objectives: to evaluate the role of conservative, decompression, spine fixation in management of closed spinal injury.
Methods: The study was conducted at Specialized Surgical hospital and Al-Kadhemayia Teaching Hospital, in the period between July 2003 and July 2005.The study included 61 patients categorized Into many groups according level of vertebral injury (cervical, cervicodorsal, dorsal, dorsolumbar, Lumbar and lumbosacral), type of injury (compressed fracture, burst fracture and fracture dislocation) And according the severity into three groups as G1( complete motor paralysis and sensory loss ) G2 ( complete motor paralysis and incomplete sensory loss) and G3 ( incomplete motor paralysis And incomplete sensory loss ).The metho
In this paper we introduce a new class of sets called -generalized b- closed (briefly gb closed) sets. We study some of its basic properties. This class of sets is strictly placed between the class of gp- closed sets and the class of gsp- closed sets. Further the notion of b- space is introduced and studied.
2000 Mathematics Subject Classification: 54A05