Preferred Language
Articles
/
ORhcaZQBVTCNdQwCNBXI
On Sδ.derived and Sδ.isolated sets in supra topological spaces
...Show More Authors

The topic of supra.topological.spaces considered one of the important topics because it is a generalization to topological.spaces. Many researchers have presented generalizations to supra open sets such as supra semi.open and supra pre.open sets and others. In this paper, the concept of δ∼open sets was employed and introduced in to the concept of supra topology and a new type of open set was extracted, which was named S∼δ∼open. Our research entails the utilization of this category of sets to form a new concepts in these spaces, namely S∼δ∼limit points and S∼δ∼derive points, and examining its relationship with S∼open and S∼reg∼open. Based on this class of sets, we have introduced other new concepts such as S∼isolated points, S∼δ∼congested points, S∼δ∼adherent points, S∼δ∼dense, S∼δ∼nowhere.dense and S∼δ∼Exterior, and explored their properties. Additionally, we have highlighted the distinctions among these concepts through several examples

Scopus Crossref
View Publication
Publication Date
Fri Jul 01 2022
Journal Name
University Of Baghdad, College Of Education For Pure Sciences / Ibn Al-haitham, Department Of Mathematics
Fibrewise Slightly Topological Spaces and Their Generalizations
...Show More Authors

The aim of this thesis is to introduce a new concept of fibrewise topological spaces which is said to be fibrewise slightly topological spaces. We generalize some of the main results that have been reached from fibrewise topology into fibrewise slightly topological space. We introduce the concepts of fibrewise slightly closed, fibrewise slightly open, fibrewise locally sliceable, and fibrewise locally sectionable slightly topological spaces. Also, state and prove several propositions related to these concepts. On the other hand, extend separation axioms of ordinary topology into fibrewise setting. The separation axioms are said to be fibrewise slightly T_0 spaces, fibrewise slightly T_1 spaces, fibrewise slightly R_0 spaces, fibrewise s

... Show More
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of Advances In Mathematics
B-Closed Topological Spaces in Terms of Grills
...Show More Authors

The concept of -closedness, a kind of covering property for topological spaces, has already been studied with meticulous care from different angles and via different approaches. In this paper, we continue the said investigation in terms of a different concept viz. grills. The deliberations in the article include certain characterizations and a few necessary conditions for the -closedness of a space, the latter conditions are also shown to be equivalent to -closedness in a - almost regular space. All these and the associated discussions and results are done with grills as the prime supporting tool.

Preview PDF
Publication Date
Sun Jun 03 2018
Journal Name
University Of Baghdad, College Of Education For Pure Sciences / Ibn Al-haitham, Department Of Mathematics
Some Types of Fibrewise Soft Topological Spaces
...Show More Authors

In this thesis, we introduced some types of fibrewise topological spaces by using a near soft set, various related results also some fibrewise near separation axiom concepts and a fibrewise soft ideal topological spaces. We introduced preliminary concepts of topological spaces, fibrewise topology, soft set theory and soft ideal theory. We explain and discuss new notion of fibrewise topological spaces, namely fibrewise soft near topological spaces, Also, we show the notions of fibrewise soft near closed topological spaces, fibrewise soft near open topological spaces, fibrewise soft near compact spaces and fibrewise locally soft near compact spaces. On the other hand, we studied fibrewise soft near forms of the more essent

... Show More
Publication Date
Tue Jun 01 2021
Journal Name
Int. J. Nonlinear Anal. Appl.
Some types of fibrewise fuzzy topological spaces
...Show More Authors

The aim of this paper is to introduce and study the notion type of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j = {δ, θ, α, p, s, b, β}.

Scopus (1)
Scopus Clarivate
Publication Date
Wed Dec 01 2021
Journal Name
University Of Baghdad, College Of Education For Pure Sciences / Ibn Al-haitham, Department Of Mathematics
Some Kinds of Fibrewise Totally Topological Spaces
...Show More Authors

In this thesis, we introduced some kinds of fibrewise topological spaces by using totally continuous function is called fibrewise totally topological spaces. We generalize some fundamental results from fibrewise topology into fibrewise totally topological spaces. We also introduce the concepts of fibrewise totally separation axioms, fibrewise totally compact and locally totally compact topological spaces. As well as fibrewise totally perfect topological spaces. We explain and discuss new notion of fibrewise topological spaces, namely fibrewise totally topological spaces. We, also introduce the concepts of fibrewise totally closed topological spaces, fibrewise totally open topological spaces, fibrewise locally sliceable and locally s

... Show More
Publication Date
Sun Nov 17 2019
Journal Name
Journal Of Interdisciplinary Mathematics
Generalized closed fuzzy soft sets in Čech fuzzy soft closure spaces
...Show More Authors

View Publication
Scopus (9)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Mon Feb 10 2025
Journal Name
Aip Conference Proceedings
Exploring generalizations of fibrewise micro-topological spaces and their applications in mathematics
...Show More Authors

Abstract. Fibrewise micro-topological spaces be a useful tool in various branches of mathematics. These mathematical objects are constructed by assigning a micro-topology to each fibre from a fibre bundle. The fibrewise micro-topological space is then formed by taking the direct limit of these individual micro-topological spaces. It can be adapted to analyze various mathematical structures, from algebraic geometry to differential equations. In this study, we delve into the generalizations of fibrewise micro-topological spaces and explore the applications of these abstract structures in different branches of mathematics. This study aims to define the fibrewise micro topological space through the generalizations that we use in this paper, whi

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Al-qadisiyah Journal Of Pure Science
Weakly and Strongly Forms of Fibrewise Fuzzy ω-Topological Spaces
...Show More Authors

This paper is devoted to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuzzy -ω-topological spaces, weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω- topological spaces. Also, Several characterizations and properties of this class are also given as well. Finally, we focused on studying the relationship between weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω-topological spaces.

View Publication Preview PDF
Publication Date
Thu Jan 24 2019
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
On strongly E-convex sets and strongly E-convex cone sets
...Show More Authors

              -convex sets and -convex functions, which are considered as an important class of generalized convex sets and convex functions, have been introduced and studied by Youness [5] and other researchers. This class has recently extended, by Youness, to strongly -convex sets and strongly -convex functions. In these generalized classes, the definitions of the classical convex sets and convex functions are relaxed and introduced with respect to a mapping . In this paper, new properties of strongly -convex sets are presented. We define strongly -convex hull, strongly -convex cone, and strongly -convex cone hull and we proof some of their properties.  Some examples to illustrate the aforementioned concepts and to cl

... Show More
View Publication
Crossref
Publication Date
Sun Mar 01 2009
Journal Name
Baghdad Science Journal
On Monotonically T2-spaces and Monotonicallynormal spaces
...Show More Authors

In this paper we show that if ? Xi is monotonically T2-space then each Xi is monotonically T2-space, too. Moreover, we show that if ? Xi is monotonically normal space then each Xi is monotonically normal space, too. Among these results we give a new proof to show that the monotonically T2-space property and monotonically normal space property are hereditary property and topologically property and give an example of T2-space but not monotonically T2-space.

View Publication Preview PDF
Crossref