The topic of supra.topological.spaces considered one of the important topics because it is a generalization to topological.spaces. Many researchers have presented generalizations to supra open sets such as supra semi.open and supra pre.open sets and others. In this paper, the concept of δ∼open sets was employed and introduced in to the concept of supra topology and a new type of open set was extracted, which was named S∼δ∼open. Our research entails the utilization of this category of sets to form a new concepts in these spaces, namely S∼δ∼limit points and S∼δ∼derive points, and examining its relationship with S∼open and S∼reg∼open. Based on this class of sets, we have introduced other new concepts such as S∼isolated points, S∼δ∼congested points, S∼δ∼adherent points, S∼δ∼dense, S∼δ∼nowhere.dense and S∼δ∼Exterior, and explored their properties. Additionally, we have highlighted the distinctions among these concepts through several examples
In this paper, a new type of supra closed sets is introduced which we called supra β*-closed sets in a supra topological space. A new set of separation axioms is defined, and its many properties are examined. The relationships between supra β*-Ti –spaces (i = 0, 1, 2) are studied and shown with instances. Additionally, new varieties of supra β*-continuous maps have been taken into consideration based on the supra β*-open sets theory.
Form the series of generalization of the topic of supra topology is the generalization of separation axioms . In this paper we have been introduced (S * - SS *) regular spaces . Most of the properties of both spaces have been investigated and reinforced with examples . In the last part we presented the notations of supra *- -space ( =0,1) and we studied their relationship with (S * - SS *) regular spaces.
In this paper, we introduce and study the concept of a new class of generalized closed set which is called generalized b*-closed set in topological spaces ( briefly .g b*-closed) we study also. some of its basic properties and investigate the relations between the associated topology.
In this paper, we introduce a new class of sets, namely , s*g-ï¡-open sets and we show that the family of all s*g-ï¡-open subsets of a topological space ) ,X( ï´ from a topology on X which is finer than ï´ . Also , we study the characterizations and basic properties of s*g-ï¡open sets and s*g-ï¡-closed sets . Moreover, we use these sets to define and study a new class of functions, namely , s*g- ï¡ -continuous functions and s*g- ï¡ -irresolute functions in topological spaces . Some properties of these functions have been studied .
In this paper, we offer and study a novel type generalized soft-open sets in topological spaces, named soft Æ„c-open sets. Relationships of this set with other types of generalized soft-open sets are discussed, definitions of soft Æ„ , soft bc- closure and soft bc- interior are introduced, and its properties are investigated. Also, we introduce and explore several characterizations and properties of this type of sets.
In this paper we introduce a new class of sets called -generalized b- closed (briefly gb closed) sets. We study some of its basic properties. This class of sets is strictly placed between the class of gp- closed sets and the class of gsp- closed sets. Further the notion of b- space is introduced and studied.
2000 Mathematics Subject Classification: 54A05
The objective of this paper is to define and introduce a new type of nano semi-open set which called nano -open set as a strong form of nano semi-open set which is related to nano closed sets in nano topological spaces. In this paper, we find all forms of the family of nano -open sets in term of upper and lower approximations of sets and we can easily find nano -open sets and they are a gate to more study. Several types of nano open sets are known, so we study relationship between the nano -open sets with the other known types of nano open sets in nano topological spaces. The Operators such as nano -interior and nano -closure are the part of this paper.
The aim of this paper is to introduce the concept of N and Nβ -closed sets in terms of neutrosophic topological spaces. Some of its properties are also discussed.
In this paper, new concepts of maximal and minimal regular s are introduced and discussed. Some basic properties are obtained. The relation between maximal and minimal regular s and some other types of open sets such as regular open sets and -open sets are investigated.
studied, and its important properties and relationship with both closed and open Nano sets were investigated. The new Nano sets were linked to the concept of Nano ideal, the development of nano ideal mildly closed set and it has been studied its properties. In addition to the applied aspect of the research, a sample was taken from patients infected with viral hepatitis, and by examining the infected people and using closed and open (nano mildly. and nano ideal mildly) sets, the important symptoms that constitute the core of this dangerous examining the infected people and using closed and open (nano mildly. and nano ideal mildly) sets, the important symptoms that constitute the core of this dangerous disease.