In this study, NAC-capped CdTe/CdS/ZnS core/double shell QDs were synthesized in an aqueous medium to investigate their utility in distinguishing normal DNA from mutated DNA extracted from biological samples. Following the interaction between the synthesized QDs with DNA extracted from leukemia cases (represents damaged DNA) and that of healthy donors (represents undamaged DNA), differential fluorescent emission maxima and intensities were observed. It was found that damaged DNA from leukemic cells DNA-QDs conjugates at 585 nm while intact DNA (from healthy subjects) DNA–QDs conjugates at 574 nm. The obtained results from the optical analyses indicate that the prepared QDs could be utilized as probe for detecting disrupted DNA that is associated with a number of diseases including malignancies. Additionally, the manufactured NAC-CdTe core with CdS shell and ZnS shell QDs were further characterized by high-resolution transmission using field emission scanning electron microscopy (FESEM), energy dispersive X-ray fluorescence (EDX), X-ray diffraction (XRD), infrared spectrum (IR), UV-vis absorbance, photoluminescence (PL) and absorbency intensity using the fully automatic ELISA. The XRD results revealed the formation of NAC-CdTe/CdS/ZnS QDs with a grain size of 5.7 nm. While EDX assay emphasizes the compound content of Cd, S, Zn and Te elements. Whereas SEM test’s findings propose the spherical size of NAC- CdTe/CdS/ZnS QDs within the range of 10–40 nm. The demonstrated mono-dispersed lattice structure of NAC-CdTe core with CdS shell and ZnS shell QDs has superior PL emission properties at [Formula: see text] of [Formula: see text]600 nm and UV-Vis absorption bands at 350 nm. Overall, this study suggests that the synthesized QDs could be employed in developing optical biosensors for a variety of biomedical applications to improve early detection of diseases marked by damaged DNA profile including cancers.
Membrane manufacturing system was operated using dry/wet phase inversion process. A sample of hollow fiber membrane was prepared using (17% wt PVC) polyvinyl chloride as membrane material and N, N Dimethylacetamide (DMAC) as solvent in the first run and the second run was made using (DMAC/Acetone) of ratio 3.4 w/w. Scanning electron microscope (SEM) was used to predict the structure and dimensions of hollow fiber membranes prepared. The ultrafiltration experiments were performed using soluble polymeric solute poly ethylene glycol (PEG) of molecular weight (20000 Dalton) 800 ppm solution 25 °C temperature and 1 bar pressure. The experimental results show that pure water permeation increased from 25.7 to 32.2 (L/m2.h.bar) by adding a
... Show MorePolyimide/MWCNTs nanocomposites have been fabricated by solution mixing process. In the present study, we have investigated electrical conductivity and dielectric properties of PI/MWCNT nanocomposites in frequency range of 1 kHz to 100 kHz at different MWCNTs concentrations from 0 wt.% to 15 wt.%. It has been observed that the electrical conductivity and dielectric constants are enhanced significantly by several orders of magnitude up to 15 wt.% of MWCNTs content. The electrical conductivity increases as the frequency is increased, which can be attributed to high dislocation density near the interface. The rapid increase in the dielectric constant at a high MWCNTs content can be explained by the form
In this study, polymeric ultrafiltration (UF) membranes were prepared by phase inversion method to obtain both antibacterial and organic antifouling properties. The membranes were cast from a solution of polyvinylidene fluoride (PVDF) and formative silver (Ag) nanoparticles were successfully immobilized on a polymer. This was done using a solvent N, N-dimethylformamide (DMF) which is a solvent for the PVDF polymer meanwhile it is a reducing agent for silver ion. The effect of silver nanoparticles additives on the performance of polymeric ultrafiltration membrane was verified. Chemical composition and morphology of the surfaces of the membranes were characterized by Fourier transform infrared spectroscopy
... Show MoreIn this work, silver (Ag) self-metallization on a polyimide (PI) film was prepared through autocatalytic plating. PI films were prepared through the solution casting method, followed by etching with potassium hydroxide (KOH) solution, sensitization with tin chloride (SnCl2), and the use of palladium chloride (PdCl2) to activate the surface of PI. Energy-dispersive X-ray analysis (EDX) showed the highest peak in the (Ag) region and confirmed the presence of AgNPs. The diffraction peaks at 2θ = 38.2°, 44.5°, 64.6°, and 78.2° represented the 111, 200, 220, and 311 planes of Ag, respectively. The FT–IR an
... Show MoreMembrane manufacturing system was operated using dry/wet phase inversion process. A sample of hollow fiber membrane was prepared using (17% wt PVC) polyvinyl chloride as membrane material and N, N Dimethylacetamide (DMAC) as solvent in the first run and the second run was made using (DMAC/Acetone) of ratio 3.4 w/w. Scanning electron microscope (SEM) was used to predict the structure and dimensions of hollow fiber membranes prepared. The ultrafiltration experiments were performed using soluble polymeric solute poly ethylene glycol (PEG) of molecular weight (20000 Dalton) 800 ppm solution 25 °C temperature and 1 bar pressure. The experimental results show that pure water permeation increased from 25.7 to 32.2 (L/m2.h.bar) by adding aceton
... Show MoreSome new heterocyclic compounds containing, cyclohexenone, indazole, isoxazoline, pyrmidine and pyrazoline ring system were prepared from chalcones (1a,b). The starting chalcones (1a,b) were obtained by a base catalyzed condensation of appropriately substituted benzaldehydes and 2-acetylbenzofuran. The reaction of the prepared chalcones with ethylacetoacetate/hydrazine hydrate, hydroxylamine hydrochloride, urea, thiourea, hydrazine hydrate, phenyl hydrazine or hydrazide derivatives gave the mentioned heterocycles. All synthesized compounds have been characterized by physical and spectral methods.
Three ligands were prepared, spectroscopic method and elemental analysis verified their structures. The L1 and L2 ligands are flavylium salts while the third one L3 is a Flavon. The reactions between transition metal salts and the ligands have synthesized two groups of new metal complexes, one group contains L1, L3 coordinated with the metal ion. The other group contains L2, L3 and the metal. These complexes have been identified by available spectroscopic tools (UV-Visible and IR), the C.H.N results confirmed the proposed structures. The experimental data disclosed that the complexes were coordinated by 6the coordinate with mono-and bidentate ligands forming octahedral structure, in which L3 acts as monodentate and L1, L2 as bidentate ligan
... Show MoreThe objective of the study is developing a procedure for production and characterization of rice husk ash (RHA). The effects of rice husk (RH) amount, burning/cooling conditions combined with stirring on producing of RHA with amorphous silica, highest SiO2, lowest loss on ignition (LOI), uniform particle shape distribution and nano structured size have been studied. It is concluded that the best amount is 20 g RH in 125 ml evaporating dish Porcelain with burning for 2 h at temperature 700 °C combined with cooling three times during burning to produce RHA with amorphous silica, SiO2 90.78% and LOI 1.73%. On the other hand, cooling and stirring times affect the variation of nano structured size and particle shape dis
... Show MoreDNA methylation is one of the main epigenetic mechanisms in cancer development and progression. Aberrant DNA methylation of CpG islands within promoter regions contributes to the dysregulation of various tumor suppressors and oncogenes; this leads to the appearance of malignant features, including rapid proliferation, metastasis, stemness, and drug resistance. The discovery of two important protein families, DNA methyltransferases (DNMTs) and Ten-eleven translocation (TET) dioxygenases, respectively, which are responsible for deregulated transcription of genes that play pivotal roles in tumorigenesis, led to further understanding of DNA methylation-related pathways. But how these enzymes can target specific genes in different malignancies;
... Show More