DNA methylation is one of the main epigenetic mechanisms in cancer development and progression. Aberrant DNA methylation of CpG islands within promoter regions contributes to the dysregulation of various tumor suppressors and oncogenes; this leads to the appearance of malignant features, including rapid proliferation, metastasis, stemness, and drug resistance. The discovery of two important protein families, DNA methyltransferases (DNMTs) and Ten-eleven translocation (TET) dioxygenases, respectively, which are responsible for deregulated transcription of genes that play pivotal roles in tumorigenesis, led to further understanding of DNA methylation-related pathways. But how these enzymes can target specific genes in different malignancies; recent studies have highlighted the considerable role of Long Non-coding RNAs (LncRNAs). LncRNAs recruit these enzymes to promoter regions of genes and mediate their functions, showing great potential as therapeutic agents targeting the epigenetic regulation of various genes. Considering the importance of combining the current treatment methods, especially chemotherapies, with DNA methylation inhibitors in improving patients' outcomes, this review aimed to summarize the recent findings about the interaction between DNA methylation machinery and LncRNAs in regulating genes involved in tumorigenesis and drug resistance. So, these studies could provide insights toward developing novel strategies for cancer-targeted therapy.
Ischemic stroke is a significant cause of morbidity and mortality worldwide. Autophagy, a process of intracellular degradation, has been shown to play a crucial role in the pathogenesis of ischemic stroke. Long non-coding RNAs (lncRNAs) have emerged as essential regulators of autophagy in various diseases, including ischemic stroke. Recent studies have identified several lncRNAs that modulate autophagy in ischemic stroke, including MALAT1, MIAT, SNHG12, H19, AC136007. 2, C2dat2, MEG3, KCNQ1OT1, SNHG3, and RMRP. These lncRNAs regulate autophagy by interacting with key proteins involved in the autophagic process, such as Beclin-1, ATG7, and LC3. Understanding the role of lncRNAs in regulating auto
Background: Colorectal cancer is a high risk disease with rapidly progression medical problems and high mortality rate. Tissue polypeptide specific antigen can be classified as biomarker candidates in colorectal cancer and other kinds of cancer. Vascular endothelial-derived growth factor has a curial role in the formation of new blood vessels. DNA methylation may decrease invasiveness of cancer.
Objectives: This study was designed to measure the potential role of some serological biomarkers in the progression of colorectal cancer as well as their relations to P53 expression, global 5-methylcytosine.
Patients and Methods: This study involved of 60 patients with colorectal ca
... Show MoreTuberculosis (TB) still remains an important medical problem due to high levels of morbidity and mortality worldwide. A series of innate immune mechanisms that create a cytokine network control the pathogenesis of tuberculosis and this response has the capacity to modify the host genomic DNA structure through epigenetic mechanisms such as DNA methylation which could constantly alter the local gene expression pattern that can modulate the metabolism of the tissues and the immune-response. Interferon-gamma (IFN-γ) is an important pro-inflammatory cytokine regulator of the innate immune response to TB. This study aims to determine DNA methylation patterns of INF-γ gene promoter and measure serum IFN- γ level in newly diagnosed TB patient
... Show MoreBreast cancer (BC) is the most common malignant tumor in women and the leading cause of cancer deaths worldwide. This work was conducted to estimate the roles of oxidative stress, vitamin B12, homocysteine (HCY), and DNA methylation in BC disease progression. Sixty BC patients (age range 33–80 years) and 30 healthy controls were recruited for this study. Patients with BC were split to group 1 consisted of stage II BC women (low level), and group 2 consisted of patients in stages III and IV (high level). Malondialdehyde (MDA), glutathione peroxidase 3 (GPX3), HCY, and vitamin B12 levels in the study groups were measured. Also, the 5-methylcytosine (5mC) global DNA methylation levels were evaluated. The results showed a significant
... Show MoreThe digital multimedia systems become standard at this time because of their extremely sensory activity effects and also the advanced development in its corresponding technology. Recently, biological techniques applied to several varieties of applications such as authentication protocols, organic chemistry, and cryptography. Deoxyribonucleic Acid (DNA) is a tool to hide the key information in multimedia platforms.
In this paper, an embedding algorithm is introduced; first, the image is divided into equally sized blocks, these blocks checked for a small amount color in all the separated blocks. The selected blocks are used to localize the necessary image information. In the second stage, a comparison is between the initial image pixel
Acute lymphoblastic leukemia (ALL) is one of the commonest hematological malignancies affecting children and adults. Recent evidence suggests an involvement of Epstein-Barr virus (EBV) in ALL pathogenicity. Epigenetic aberration, especially altered DNA methylation marks, is a key event of cancer development. The present study aims to investigate how the ALL epimethylome reacts to viral infection through the assessment of the total 5-methylcytosine (5mC) levels in ALL patients, according to EBV infection. The 5mC global DNA methylation levels in 50 diagnosed ALL patients (age mean 26.23 yrs; age range 10-60 yrs) and 25 age-matched healthy controls were assessed using MethylFlash™ Methylated DNA Quantification Kit. Acute pri
... Show MoreBackground: The discriminative power of the classical WHO parameters in relation to male fertility is quite low, because they only address few aspects of sperm quality and function. This has led investigators to focus their attention on the male gamete and in particular its genome.Objective: To explore which of the sperm DNA damage parameters measured by comet assay are more reliable, and their relations with the standard semen parameters.Methods: Study was done on 40 infertile men selected from couples attending the Institute of Embryo Reasearch and Infertility Treatment at Al-Kadhimiya City/ Baghdad in the period between February 2009 and May 2009, with a history of infertility of ≥1 years; and 15 healthy volunteers of proven fertili
... Show MoreObjectives: This study aims to broaden our knowledge of the role of eDNA in bacterial biofilms and antibiotic-resistance gene transfer among isolates. Methods: Staphylococcus aureus, E. coli, and Pseudomonas aeruginosa were isolated from different non-repeated 170 specimens. The bacterial isolates were identified using morphological and molecular methods. Different concentrations of genomic DNA were tested for their potential role in biofilms formed by study isolates employing microtiter plate assay. Ciprofloxacin resistance was identified by detecting a mutation in gyrA and parC. Results: The biofilm intensity significantly decreased (P < 0.05) concerning S. aureus isolates and insignificantly (P > 0.05) concernin
... Show MoreSoil-structure frictional resistance is an important parameter in the design of many foundation systems. The soil-structure interface area is responsible for load transferring from the structure to the surrounding soil. The mobilized shaft resistance of axially loaded, long slender pile embedded in dense, dry sand is experimentally and numerically analyzed when subjected to pullout force. Experimental setup including an instrumented model pile while the finite element method is used as a numerical analysis tool. The hypoplasticity model is used to model the soil adjacent to and surrounding the pile by using ABAQUS FEA (6.17.1). The soil-structure interface behavior depends on many factors, but mainly on the interface soi
... Show More