In this study, NAC-capped CdTe/CdS/ZnS core/double shell QDs were synthesized in an aqueous medium to investigate their utility in distinguishing normal DNA from mutated DNA extracted from biological samples. Following the interaction between the synthesized QDs with DNA extracted from leukemia cases (represents damaged DNA) and that of healthy donors (represents undamaged DNA), differential fluorescent emission maxima and intensities were observed. It was found that damaged DNA from leukemic cells DNA-QDs conjugates at 585 nm while intact DNA (from healthy subjects) DNA–QDs conjugates at 574 nm. The obtained results from the optical analyses indicate that the prepared QDs could be utilized as probe for detecting disrupted DNA that is associated with a number of diseases including malignancies. Additionally, the manufactured NAC-CdTe core with CdS shell and ZnS shell QDs were further characterized by high-resolution transmission using field emission scanning electron microscopy (FESEM), energy dispersive X-ray fluorescence (EDX), X-ray diffraction (XRD), infrared spectrum (IR), UV-vis absorbance, photoluminescence (PL) and absorbency intensity using the fully automatic ELISA. The XRD results revealed the formation of NAC-CdTe/CdS/ZnS QDs with a grain size of 5.7 nm. While EDX assay emphasizes the compound content of Cd, S, Zn and Te elements. Whereas SEM test’s findings propose the spherical size of NAC- CdTe/CdS/ZnS QDs within the range of 10–40 nm. The demonstrated mono-dispersed lattice structure of NAC-CdTe core with CdS shell and ZnS shell QDs has superior PL emission properties at [Formula: see text] of [Formula: see text]600 nm and UV-Vis absorption bands at 350 nm. Overall, this study suggests that the synthesized QDs could be employed in developing optical biosensors for a variety of biomedical applications to improve early detection of diseases marked by damaged DNA profile including cancers.
In this study the most stable isobar for some isobaric families (light and intermediate ) nuclei with mass number (A) equals to (15-30) & (101- 115) have been determined. This determination of stable nuclide can help to determine the suitable nuclide, which can be used in different fields.
Most stable isobar can be determined by two means. First: plot mass parabolas (plotting the binding energy (B.E) as a function of the atomic number (Z)) for these isobaric families, in this method most stable isobars represent the lowest point in mass parabola (the nuclide with the highest value of binding energy).
Second: calculated the atomic number for most stable isobar (ZA) value.
Our results show that
... Show MoreThe heat exchanger is a device used to transfer heat energy between two fluids, hot and cold. In this work, an output feedback adaptive sliding mode controller is designed to control the temperature of the outlet cold water for plate heat exchanger. The measurement of the outlet cold temperature is the only information required. Hence, a sliding mode differentiator was designed to estimate the time derivative of outlet hot water temperature, which it is needed for constructing a sliding variable. The discontinuous gain value of the sliding mode controller is adapted according to a certain adaptation law. Two constraints which imposed on the volumetric flow rate of outlet cold (control input) were considered within the rules of the proposed
... Show MoreIn this paper, previous studies about Fuzzy regression had been presented. The fuzzy regression is a generalization of the traditional regression model that formulates a fuzzy environment's relationship to independent and dependent variables. All this can be introduced by non-parametric model, as well as a semi-parametric model. Moreover, results obtained from the previous studies and their conclusions were put forward in this context. So, we suggest a novel method of estimation via new weights instead of the old weights and introduce
Paper Type: Review article.
another suggestion based on artificial neural networks.
The performance quality and searching speed of Block Matching (BM) algorithm are affected by shapes and sizes of the search patterns used in the algorithm. In this paper, Kite Cross Hexagonal Search (KCHS) is proposed. This algorithm uses different search patterns (kite, cross, and hexagonal) to search for the best Motion Vector (MV). In first step, KCHS uses cross search pattern. In second step, it uses one of kite search patterns (up, down, left, or right depending on the first step). In subsequent steps, it uses large/small Hexagonal Search (HS) patterns. This new algorithm is compared with several known fast block matching algorithms. Comparisons are based on search points and Peak Signal to Noise Ratio (PSNR). According to resul
... Show MoreSub-threshold operation has received a lot of attention in limited performance applications.However, energy optimization of sub-threshold circuits should be performed with the concern of the performance limitation of such circuit. In this paper, a dual size design is proposed for energy minimization of sub-threshold CMOS circuits. The optimal downsizing factor is determined and assigned for some gates on the off-critical paths to minimize the energy at the maximum allowable performance. This assignment is performed using the proposed slack based genetic algorithm which is a heuristic-mixed evolutionary algorithm. Some gates are heuristically assigned to the original and the downsized design based on their slack time determined by static tim
... Show MoreThe pancreatic ductal adenocarcinoma (PDAC), which represents over 90% of pancreatic cancer cases,
has the highest proliferative and metastatic rate in comparison to other pancreatic cancer compartments. This
study is designed to determine whether small nucleolar RNA, H/ACA box 64 (snoRNA64) is associated with
pancreatic cancer initiation and progression. Gene expression data from the Gene Expression Omnibus (GEO)
repository have shown that snoRNA64 expression is reduced in primary and metastatic pancreatic cancer as
compared to normal tissues based on statistical analysis of the in Silico analysis. Using qPCR techniques,
pancreatic cancer cell lines include PK-1, PK-8, PK-4, and Mia PaCa-2 with differ