Preferred Language
Articles
/
OBgbXJQBVTCNdQwCQRNU
Preparation of N-A Cysteine-capped CdTe/CdS/ZnS core/shell/shell QDs as a Selective Probe for Detecting Damaged DNA
...Show More Authors

In this study, NAC-capped CdTe/CdS/ZnS core/double shell QDs were synthesized in an aqueous medium to investigate their utility in distinguishing normal DNA from mutated DNA extracted from biological samples. Following the interaction between the synthesized QDs with DNA extracted from leukemia cases (represents damaged DNA) and that of healthy donors (represents undamaged DNA), differential fluorescent emission maxima and intensities were observed. It was found that damaged DNA from leukemic cells DNA-QDs conjugates at 585 nm while intact DNA (from healthy subjects) DNA–QDs conjugates at 574 nm. The obtained results from the optical analyses indicate that the prepared QDs could be utilized as probe for detecting disrupted DNA that is associated with a number of diseases including malignancies. Additionally, the manufactured NAC-CdTe core with CdS shell and ZnS shell QDs were further characterized by high-resolution transmission using field emission scanning electron microscopy (FESEM), energy dispersive X-ray fluorescence (EDX), X-ray diffraction (XRD), infrared spectrum (IR), UV-vis absorbance, photoluminescence (PL) and absorbency intensity using the fully automatic ELISA. The XRD results revealed the formation of NAC-CdTe/CdS/ZnS QDs with a grain size of 5.7 nm. While EDX assay emphasizes the compound content of Cd, S, Zn and Te elements. Whereas SEM test’s findings propose the spherical size of NAC- CdTe/CdS/ZnS QDs within the range of 10–40 nm. The demonstrated mono-dispersed lattice structure of NAC-CdTe core with CdS shell and ZnS shell QDs has superior PL emission properties at [Formula: see text] of [Formula: see text]600 nm and UV-Vis absorption bands at 350 nm. Overall, this study suggests that the synthesized QDs could be employed in developing optical biosensors for a variety of biomedical applications to improve early detection of diseases marked by damaged DNA profile including cancers.

Clarivate Crossref
View Publication
Publication Date
Tue Jul 30 2024
Journal Name
Iraqi Journal Of Science
N-Acetyl Cysteine-Cadmium Telluride NAC-CdTe QDs for Detecting the Damaged DNA in Cancerous Diseases
...Show More Authors

In this study water-soluble N-Acetyl Cysteine Capped-Cadmium Telluride QDs (NAC/CdTe nanocrystals) using N-acetyl cysteine as a stabilizer were prepared to investigate the utility of quantum dots (QDs) in distinguishing damaged DNA, (extracted from blood samples of leukaemia patients), from intact DNA (extracted from blood samples of healthy individuals) to be used for biosensing application. Based on the optical characterization of the prepared QDs, the XRD results revealed the formation of the NAC-CdTe-QDs with a grain size of 7.1nm. Whereas, the SEM test showed that the spherical size of the NAC-CdTe-QDs lies within 11~33nm. NAC-CdTe-QDs have superior PL emission properties at of 550nm and UV-Vis absorption peak at 300nm. The energy gap

... Show More
View Publication
Crossref
Publication Date
Fri Sep 06 2024
Journal Name
Journal Of Optics
Synthesis of N-A cysteine-capped CdTe QDs for optical biosensing
...Show More Authors

In this investigation, water-soluble N-Acetyl Cysteine Capped-Cadmium Telluride QDs (NAC/CdTe nanocrystals), utilizing N-acetyl cysteine as a stabilizer, were prepared to assess their potential in differentiating between DNA extracted from pathogenic bacteria (e.g. Escherichia coli isolated from urine specimen) and intact DNA (extracted from blood of healthy individuals) for biomedical sensing prospective. Following the optical characterization of the synthesized QDs, the XRD analysis illustrated the construction of NAC-CdTe-QDs with a grain size of 7.1 nm. The prepared NAC-CdTe-QDs exhibited higher PL emission features at of 550 nm and UV-Vis absorption peak at 300 nm. Additionally, the energy gap quantified via PL and UV–Vis were 2.2 eV

... Show More
View Publication
Clarivate Crossref
Publication Date
Wed Jul 29 2020
Journal Name
Iraqi Journal Of Science
CdSe/ZnS Core/Shell for Luminescent Solar Concentrator
...Show More Authors

Fabrication and investigation of the properties of CdSe/ZnS core/shell for the luminescent solar concentrates (LSC) application is presented. An increase of the efficiency of a silicon solar cell was obtained by applying the LSC. The increase was a result of the optical properties of the semiconductor nanoparticles CdSe/ZnS core/shell that were deposited over the top surface of the silicon solar cell facing the illumination source (Halogen lamp). The gravity force was invested for the film deposition process.The optical properties of these nanoparticles were studied. The absorption spectra for the CdSe/ZnS core-shell were 270-600nm, i.e., located within the spectral response area of the examined solar cell. The energy gap values for CdSe

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Crossref
Publication Date
Fri Nov 29 2019
Journal Name
Iraqi Journal Of Physics
CdSe/CdS core/shell in polyacrylamide polymer matrix for Quantumdots Luminescent solar concentrator
...Show More Authors

Luminescent solar concentrator (LSC) are used to enhance       photoresponsivity of solar cell. The Quantumdots luminescent solar concentrator (QDLSC) consists of CdSe/CdS core/shell nanoparticles embedded in polyacrylamide polymer matrix positioned on the top surface of the silicon solar cell. This procedure improves the conversion efficiency of the bare silicon solar cell. The conversion efficiency of the solar cell has increased from 7.3% to 10.3%.  this improvement is referred to the widening of the response spectral region window  of the a- Si. Solar cell.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Jul 31 2022
Journal Name
Iraqi Journal Of Science
Silver Nanoparticles as a selective probe for Mercury Ions: A Review
...Show More Authors

   Nanochemistry is a significant area which involves the synthesis, design, and manipulation of particle structures with dimensions ranging from 1 to 100 nanometres. It is now one of the major concerns of pharmaceutical and biological researchers. The current study discusses recent advances in the use of silver nanoparticles (AgNPs) as a selective sensor for qualitative and colorimetric quantitative detection of mercury ions.   The synthesis of significant noble metal AgNPs is described as a novel, low-cost, quick, and simple method for detecting mercury ions. Due to the seriousness of mercury toxicity to our cells, AgNPs may be successfully employed for the detection of ecologically harmful mercury ions in a wide variety of aqueous

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu Dec 23 2021
Journal Name
Iraqi Journal Of Science
Structural, Optical and Morphological Characterization of Cdse/Cds Core / Shell Quantum Dots Synthesized via Chemical Bath
...Show More Authors

     CdSe/CdS Core/shell nanostructures were prepared through the chemical synthesis method. XRD ,FESEM and TEM investigations confirmed the formation of core/shell structure for the sample. The AFM measurement was employed to reveal the morphology of the prepared thin films. Optical characterizations of the quantum dots were done by UV-visible and photoluminescence spectra. It was found that the quantum dots prepared has  good optical properties. Due to the presence of shell coating on core CdSe, the energy gap of the core/shell nanomaterial were increased from 2.2 to 2.3eV. The resulted QDs  are a promising candidate for photovoltaic and biosensor applications.

View Publication Preview PDF
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
Noble Metals/NiO Core- Shell Based Gas Sensors
...Show More Authors

The application of novel core-shell nanostructure composed of Cu, Ag, Au/NiO to improve the sensitivity of pure NiO to H2S gas sensors is demonstrated in this study. The growth of Cu, Ag, Au/NiO core-shell nanostructure is performed by chemical reaction of NiO on metal nanoparticle (Cu, Ag and Au) that prepared by pulsed laser ablation (PLA( technique. This is to form the homogeneous structure of the sensors investigated in this report to assess their sensitivity in terms of H2S detection. These novel H2S gas sensors were evaluated at operating temperatures of 25 °C, 100 °C and at 150 °C. The result reveals the Cu, Ag, Au/NiO core-shell nanostructure present a good sensitivity at low working temperatures compared by pure NiO nanoparti

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 06 2010
Journal Name
Baghdad Science Journal
Charge density distributions for odd-A of 2s-1d shell nuclei
...Show More Authors

An analytical expression for the charge density distributions is derived based on the use of occupation numbers of the states and the single particle wave functions of the harmonic oscillator potential with size parameters chosen to reproduce the observed root mean square charge radii for all considered nuclei. The derived expression, which is applicable throughout the whole region of shell nuclei, has been employed in the calculations concerning the charge density distributions for odd- of shell nuclei, such as and nuclei. It is found that introducing an additional parameters, namely and which reflect the difference of the occupation numbers of the states from the prediction of the simple shell model leads to obtain a remarkabl

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Sep 26 2024
Journal Name
Journal Of Optics
Cysteine-cupped CdSe/CdS quantum dots as an opticalbiosensor for early skin cancer detection
...Show More Authors

This study represents an optical biosensor for early skin cancer detection using cysteine-cupped CdSe/CdS Quantum Dots (QDs). The study optimizes QD synthesis, surface, optical functionalization, and bioconjugation to enhance specificity and sensitivity for early skin cancer cell detection. The research provides insights into QD interactions with skin cancer biomarkers, demonstrating high-contrast, precise cellular imaging. Cysteine-capped CdSe/CdS absorption spectra reveal characteristic peaks for undamaged DNA, while spectral shifts indicate structural changes in skin-cancer-damaged DNA. Additionally, fluorescence spectra show sharp peaks for undamaged DNA and notable shifts and intensity variations when interacting with skin cancer. This

... Show More
View Publication
Clarivate Crossref
Publication Date
Sun Jul 02 2023
Journal Name
Iraqi Journal Of Science
Elastic Electron Scattering form Factors for Odd-A 2s-1d Shell Nuclei
...Show More Authors

The charge density distributions (CDD) and the elastic electron scattering form
factors F(q) of the ground state for some odd mass nuclei in the 2s 1d shell, such
as K Mg Al Si 19 25 27 29 , , , and P 31
have been calculated based on the use of
occupation numbers of the states and the single particle wave functions of the
harmonic oscillator potential with size parameters chosen to reproduce the observed
root mean square charge radii for all considered nuclei. It is found that introducing
additional parameters, namely; 1  , and , 2  which reflect the difference of the
occupation numbers of the states from the prediction of the simple shell model leads
to very good agreement between the calculated an

... Show More
View Publication Preview PDF