A non-zero module M is called hollow, if every proper submodule of M is small. In this work we introduce a generalization of this type of modules; we call it prime hollow modules. Some main properties of this kind of modules are investigated and the relation between these modules with hollow modules and some other modules are studied, such as semihollow, amply supplemented and lifting modules.
In this paper, we introduce and study a new concept (up to our knowledge) named CL-duo modules, which is bigger than that of duo modules, and smaller than weak duo module which is given by Ozcan and Harmanci. Several properties are investigated. Also we consider some characterizations of CL-duo modules. Moreover, many relationships are given for this class of modules with other related classes of modules such as weak duo modules, P-duo modules.
Let R be a commutative ring with identity and let M be a unital left R-module.
A.Tercan introduced the following concept.An R-module M is called a CLSmodule
if every y-closed submodule is a direct summand .The main purpose of this
work is to develop the properties of y-closed submodules.
In this paper, we introduced module that satisfying strongly -condition modules and strongly -type modules as generalizations of t-extending. A module is said strongly -condition if for every submodule of has a complement which is fully invariant direct summand. A module is said to be strongly -type modules if every t-closed submodule has a complement which is a fully invariant direct summand. Many characterizations for modules with strongly -condition for strongly -type module are given. Also many connections between these types of module and some related types of modules are investigated.
Our active aim in this paper is to prove the following Let Ŕ be a ring having an
idempotent element e(e 0,e 1) . Suppose that R is a subring of Ŕ which
satisfies:
(i) eR R and Re R .
(ii) xR 0 implies x 0 .
(iii ) eRx 0 implies x 0( and hence Rx 0 implies x 0) .
(iv) exeR(1 e) 0 implies exe 0 .
If D is a derivable map of R satisfying D(R ) R ;i, j 1,2. ij ij Then D is
additive. This extend Daif's result to the case R need not contain any non-zero
idempotent element.
A submodule N of a module M is said to be s-essential if it has nonzero intersection with any nonzero small submodule in M. In this article, we introduce and study a class of modules in which all its nonzero endomorphisms have non-s-essential kernels, named, strongly -nonsigular. We investigate some properties of strongly -nonsigular modules. Direct summand, direct sums and some connections of such modules are discussed.
The main goal of this paper is to introduce a new class in the category of modules. It is called quasi-invertibility monoform (briefly QI-monoform) modules. This class of modules is a generalization of monoform modules. Various properties and another characterization of QI-monoform modules are investigated. So, we prove that an R-module M is QI-monoform if and only if for each non-zero homomorphism f:M E(M), the kernel of this homomorphism is not quasi-invertible submodule of M. Moreover, the cases under which the QI-monoform module can be monoform are discussed. The relationships between QI-monoform and other related concepts such as semisimple, injective and multiplication modules are studied. We also show that they are proper subclass
... Show MoreMorphologies of ceramic hollow fiber membranes prepared by a combined phase-inversion and sintering method were studied. The organic binder spinning solution containing suspended Al₂O₃ powders was spun to a hollow fiber precursor, which was then sintered at elevated temperatures( 300 ˚C, 1400 ˚C, 25 ˚C) in order to obtain the Al₂O₃ hollow fiber membranes. The spinning solution consisted of polyether sulfone (PES), N-methyl-2-pyrrolidone (NMP), which were used as polymer binder, solvent, respectively. The prepared Al₂O₃ hollow fiber membranes were characterized by a scanning electron microscope (SEM). It is believed that finger-like void formation in asymmetric ceramic membranes is initiated by hydrodynamically unstable vis
... Show MoreWe introduce in this paper the concept of an approximately pure submodule as a generalization of a pure submodule, that is defined by Anderson and Fuller. If every submodule of an R-module is approximately pure, then is called F-approximately regular. Further, many results about this concept are given.
Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as we discuss the relation between this concept and some other related concepts.
Let be a right module over an arbitrary ring with identity and . In this work, the coclosed rickart modules as a generalization of rickart modules is given. We say a module over coclosed rickart if for each , is a coclosed submodule of . Basic results over this paper are introduced and connections between these modules and otherwise notions are investigated.