A non-zero module M is called hollow, if every proper submodule of M is small. In this work we introduce a generalization of this type of modules; we call it prime hollow modules. Some main properties of this kind of modules are investigated and the relation between these modules with hollow modules and some other modules are studied, such as semihollow, amply supplemented and lifting modules.
"In this article, "we introduce the concept of a WE-Prime submodule", as a stronger form of a weakly prime submodule". "And as a "generalization of WE-Prime submodule", we introduce the concept of WE-Semi-Prime submodule, which is also a stronger form of a weakly semi-prime submodule". "Various basic properties of these two concepts are discussed. Furthermore, the relationships between "WE-Prime submodules and weakly prime submodules" and studied". "On the other hand the relation between "WE-Prime submodules and WE-Semi-Prime submodules" are consider". "Also" the relation of "WE-Sime-Prime submodules and weakly semi-prime submodules" are explained. Behind that, some characterizations of these concepts are investigated".
... Show MoreIn this article, unless otherwise established, all rings are commutative with identity and all modules are unitary left R-module. We offer this concept of WN-prime as new generalization of weakly prime submodules. Some basic properties of weakly nearly prime submodules are given. Many characterizations, examples of this concept are stablished.
Let R be a commutative ring with unity and let M be an R-module. In this paper we
study strongly (completely) hollow submodules and quasi-hollow submodules. We investigate
the basic properties of these submodules and the relationships between them. Also we study
the be behavior of these submodules under certain class of modules such as compultiplication,
distributive, multiplication and scalar modules. In part II we shall continue the study of these
submodules.
Let R be a commutative ring with identity and M be an unitary R-module. Let ï¤(M) be the set of all submodules of M, and ï¹: ï¤(M)  ï¤(M)  {ï¦} be a function. We say that a proper submodule P of M is ï¹-prime if for each r  R and x  M, if rx  P, then either x  P + ï¹(P) or r M ïƒ P + ï¹(P) . Some of the properties of this concept will be investigated. Some characterizations of ï¹-prime submodules will be given, and we show that under some assumptions prime submodules and ï¹-prime submodules are coincide.
In this paper we introduce and study a new concept named couniform modules, which is a dual notion of uniform modules, where an R-module M is said to be couniform if every proper submodule N of M is either zero or there exists a proper submodule N1 of N such that is small submodule of (denoted by ) Also many relationships are given between this class of modules and other related classes of modules. Finally, we consider the hereditary property between R-module M and R-module R in case M is couniform.
In this paper, we introduce and study a new concept named couniform modules, which is a dual notion of uniform modules, where an R-module M is said to be couniform if every proper submodule N of M is either zero or there exists a proper submodule N1 of N such that is small submodule of Also many relationships are given between this class of modules and other related classes of modules. Finally, we consider the hereditary property between R-module M and R-module R in case M is couniform.
Let R be a commutative ring with identity and M an unitary R-module. Let ï¤(M) be the set of all submodules of M, and ï¹: ï¤(M)  ï¤(M)  {ï¦} be a function. We say that a proper submodule P of M is end-ï¹-prime if for each ï¡ ïƒŽ EndR(M) and x  M, if ï¡(x)  P, then either x  P + ï¹(P) or ï¡(M) ïƒ P + ï¹(P). Some of the properties of this concept will be investigated. Some characterizations of end-ï¹-prime submodules will be given, and we show that under some assumtions prime submodules and end-ï¹-prime submodules are coincide.
Let R be commutative Ring , and let T be unitary left .In this paper ,WAPP-quasi prime submodules are introduced as new generalization of Weakly quasi prime submodules , where proper submodule C of an R-module T is called WAPP –quasi prime submodule of T, if whenever 0≠rstϵC, for r, s ϵR , t ϵT, implies that either r tϵ C +soc or s tϵC +soc .Many examples of characterizations and basic properties are given . Furthermore several characterizations of WAPP-quasi prime submodules in the class of multiplication modules are established.