Preferred Language
Articles
/
bsj-2354
Notes on Traces of a Symmetric Generalized (?, ?)-Biderivations and Commutativity in Prime Rings
...Show More Authors

Let R be a 2-torision free prime ring and ?, ?? Aut(R). Furthermore, G: R×R?R is a symmetric generalized (?, ?)-Biderivation associated with a nonzero (?, ?)-Biderivation D. In this paper some certain identities are presented satisfying by the traces of G and D on an ideal of R which forces R to be commutative

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 06 2016
Journal Name
Baghdad Science Journal
On (σ,τ)-Derivations and Commutativity of Prime and Semi prime Γ-rings
...Show More Authors

Let R be a Г-ring, and σ, τ be two automorphisms of R. An additive mapping d from a Γ-ring R into itself is called a (σ,τ)-derivation on R if d(aαb) = d(a)α σ(b) + τ(a)αd(b), holds for all a,b ∈R and α∈Γ. d is called strong commutativity preserving (SCP) on R if [d(a), d(b)]α = [a,b]α(σ,τ) holds for all a,b∈R and α∈Γ. In this paper, we investigate the commutativity of R by the strong commutativity preserving (σ,τ)-derivation d satisfied some properties, when R is prime and semi prime Г-ring.

View Publication Preview PDF
Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
Generalized Γ-n-Derivations on Prime Γ-Near-Rings
...Show More Authors
Abstract<p>The main purpose of this paper is to define generalized Γ-n-derivation, study and investigate some results of generalized Γ-n-derivation on prime Γ-near-ring G and <italic>K</italic> be a nonzero semi-group ideal of <italic>G</italic> which force G to be a commutative ring.</p>
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
On Higher N-Derivation Of Prime Rings
...Show More Authors

The main purpose of this work is to introduce the concept of higher N-derivation and study this concept into 2-torsion free prime ring we proved that:Let R be a prime ring of char. 2, U be a Jordan ideal of R and be a higher N-derivation of R, then , for all u U , r R , n N .

View Publication Preview PDF
Crossref
Publication Date
Wed Dec 18 2019
Journal Name
Baghdad Science Journal
Orthogonal Symmetric Higher bi-Derivations on Semiprime Г-Rings
...Show More Authors

   Let M is a Г-ring. In this paper the concept of orthogonal symmetric higher bi-derivations on semiprime Г-ring is presented and studied and the relations of two symmetric higher bi-derivations on Г-ring are introduced.

View Publication Preview PDF
Crossref (1)
Clarivate Crossref
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Jordan left (?,?) -derivations Of ?-prime rings
...Show More Authors

It was known that every left (?,?) -derivation is a Jordan left (?,?) – derivation on ?-prime rings but the converse need not be true. In this paper we give conditions to the converse to be true.

View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
On Semigroup Ideals and Right n-Derivation in 3-Prime Near-Rings
...Show More Authors

 The current paper studied the concept of right n-derivation satisfying certified conditions on semigroup ideals of near-rings and some related properties. Interesting results have been reached, the most prominent of which are the following: Let M be a 3-prime left near-ring and A_1,A_2,…,A_n are nonzero semigroup ideals of M, if d is a right n-derivation of M satisfies on of the following conditions,
d(u_1,u_2,…,(u_j,v_j ),…,u_n )=0 ∀ 〖 u〗_1 〖ϵA〗_1 ,u_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n ϵA〗_u;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=0 ∀u_1,v_1 〖ϵA〗_1,u_2,v_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n,v_n ϵA〗_u ;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=(u_

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Dec 05 2010
Journal Name
Baghdad Science Journal
Jordan ?-Centralizers of Prime and Semiprime Rings
...Show More Authors

The purpose of this paper is to prove the following result: Let R be a 2-torsion free ring and T: R?R an additive mapping such that T is left (right) Jordan ?-centralizers on R. Then T is a left (right) ?-centralizer of R, if one of the following conditions hold (i) R is a semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where ? be surjective endomorphism of R . It is also proved that if T(x?y)=T(x)??(y)=?(x)?T(y) for all x, y ? R and ?-centralizers of R coincide under same condition and ?(Z(R)) = Z(R) .

View Publication Preview PDF
Crossref
Publication Date
Sat Oct 28 2023
Journal Name
Baghdad Science Journal
Generalized Left Derivations with Identities on Near-Rings
...Show More Authors

In this paper, new concepts which are called: left derivations and generalized left derivations in nearrings have been defined. Furthermore, the commutativity of the 3-prime near-ring which involves some
algebraic identities on generalized left derivation has been studied.

View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Physics: Conference Series
On Generalized (α, β) Derivation on Prime Semirings
...Show More Authors
Abstract<p>In this paper we introduce generalized (α, β) derivation on Semirings and extend some results of Oznur Golbasi on prime Semiring. Also, we present some results of commutativity of prime Semiring with these derivation.</p>
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Semigroup ideal in Prime Near-Rings with Derivations
...Show More Authors

In this paper we generalize some of the results due to Bell and Mason on a near-ring N admitting a derivation D , and we will show that the body of evidence on prime near-rings with derivations have the behavior of the ring. Our purpose in this work is to explore further this ring like behavior. Also, we show that under appropriate additional hypothesis a near-ring must be a commutative ring.

View Publication Preview PDF
Crossref