Let R be a 2-torision free prime ring and ?, ?? Aut(R). Furthermore, G: R×R?R is a symmetric generalized (?, ?)-Biderivation associated with a nonzero (?, ?)-Biderivation D. In this paper some certain identities are presented satisfying by the traces of G and D on an ideal of R which forces R to be commutative
The main purpose of this paper is to define generalized Γ-n-derivation, study and investigate some results of generalized Γ-n-derivation on prime Γ-near-ring G and
In this study, we prove that let N be a fixed positive integer and R be a semiprime -ring with extended centroid . Suppose that additive maps such that is onto, satisfy one of the following conditions belong to Г-N- generalized strong commutativity preserving for short; (Γ-N-GSCP) on R belong to Г-N-anti-generalized strong commutativity preserving for short; (Γ-N-AGSCP) Then there exists an element and additive maps such that is of the form and when condition (i) is satisfied, and when condition (ii) is satisfied
In this paper, we introduce the notion of Jordan generalized Derivation on prime and then some related concepts are discussed. We also verify that every Jordan generalized Derivation is generalized Derivation when is a 2-torsionfree prime .
In the current paper, we study the structure of Jordan ideals of a 3-prime near-ring which satisfies some algebraic identities involving left generalized derivations and right centralizers. The limitations imposed in the hypothesis were justified by examples.
The main purpose of this paper is to show that zero symmetric prime near-rings, satisfying certain identities on n-derivations, are commutative rings.
In this paper, we will generalized some results related to centralizer concept on
prime and semiprime Γ-rings of characteristic different from 2 .These results
relating to some results concerning left centralizer on Γ-rings.
The main purpose of this work is to introduce the concept of higher N-derivation and study this concept into 2-torsion free prime ring we proved that:Let R be a prime ring of char. 2, U be a Jordan ideal of R and be a higher N-derivation of R, then , for all u U , r R , n N .
Let R be a prime ring and δ a right (σ,τ)-derivation on R. In the present paper we will prove the following results:
First, suppose that R is a prime ring and I a non-zero ideal of R if δ acts as a homomorphism on I then δ=0 on R, and if δ acts an anti- homomorphism on I then either δ=0 on R or R is commutative.
Second, suppose that R is 2-torsion-free prime ring and J a non-zero Jordan ideal and a subring of R, if δ acts as a homomorphism on J then δ=0 on J, and if δ acts an anti- homomorphism on J then either δ=0 on J or J
Z(R).
In this paper, we study the concepts of generalized reverse derivation, Jordan
generalized reverse derivation and Jordan generalized triple reverse derivation on -
ring M. The aim of this paper is to prove that every Jordan generalized reverse
derivation of -ring M is generalized reverse derivation of M.
Let M is a Г-ring. In this paper the concept of orthogonal symmetric higher bi-derivations on semiprime Г-ring is presented and studied and the relations of two symmetric higher bi-derivations on Г-ring are introduced.