Background: Nursing interventions tailored to the smoking triggers in patients with non-communicable chronic diseases are essential. However, these interventions are scant due to the nature of factors associated with smoking cessation and the poor understanding of the effect of nurse-led intervention in Iraq.Purpose: This study aimed to determine the dominant smoking triggers and examine the effects of a tailored nursing intervention on smoking behavior in patients with non-communicable chronic diseases.Methods: Convenience samples of 128 patients with non-communicable chronic diseases, male and female patients, who were 18-70 years old, were recruited in this quasi-experimental, randomized comparative trial in the outpatient clinic in one major teaching hospital in Baghdad City, Iraq. The intervention included simple yet specific instructions that were given both orally and in written form to the study samples to enable them to manage their craving to smoke for 6 weeks. The smoking triggers were assessed using Why Do You Smoke questionnaire. Participants were randomly allocated to receive either the nurse-led intervention or standard care. Data were analyzed using descriptive statistics, independent sample t-tests, logistic regression, and two-sided tests.Results: Stress reduction was the dominant smoking trigger among subjects. The percentage of participants who were either able to completely quit smoking or reduce the number of smoked cigarettes per day (n=19, 29.7%; n=28, 43.8%, respectively) was greater in the study group than those in the control group (n=5, 5.8%; n=5, 5.8%, respectively). Study findings demonstrated significant differences in the inability to improve readiness to quit smoking between the intervention group and control group (p=0.000) at the sixth-week follow-up.Conclusion: The tailored nursing intervention was effective for a successful achievement of smoking reduction and cessation among patients with non-communicable chronic diseases, and a potential to equip nurses in clinical settings to support patients to achieve this is recommended.
In every country in the world, there are a number of amputees who have been exposed to some accidents that led to the loss of their upper limbs. The aim of this study is to suggest a system for real-time classification of five classes of shoulder girdle motions for high-level upper limb amputees using a pattern recognition system. In the suggested system, the wavelet transform was utilized for feature extraction, and the extreme learning machine was used as a classifier. The system was tested on four intact-limbed subjects and one amputee, with eight channels involving five electromyography channels and three-axis accelerometer sensor. The study shows that the suggested pattern recognition system has the ability to classify the sho
... Show MoreElectronic remote identification (ER-ID) is a new radio frequency (RF) technology that is initiated by the Federal Aviation Authorities (FAA). For security reasons, traffic control, and so on, ER-ID has been applied for drones by the FAA to enable them to transmit their unique identification and location so that unauthorized drones can be identified. The current limitation of the existing ER-ID algorithms is that the application is limited to the Wi-Fi and Bluetooth wireless controllers, which results in a maximum range of 10–20 m for Bluetooth and 50–100 m for Wi-Fi. In this study, a mathematical computing technique based on finite state automaton (FSA) is introduced to expand the range of the ER-ID RF system and reduce the ene
... Show MoreIntroduction: Carrier-based gutta-percha is an effective method of root canal obturation creating a 3-dimensional filling; however, retrieval of the plastic carrier is relatively difficult, particularly with smaller sizes. The purpose of this study was to develop composite carriers consisting of polyethylene (PE), hydroxyapatite (HA), and strontium oxide (SrO) for carrier-based root canal obturation. Methods: Composite fibers of HA, PE, and SrO were fabricated in the shape of a carrier for delivering gutta-percha (GP) using a melt-extrusion process. The fibers were characterized using infrared spectroscopy and the thermal properties determined using differential scanning calorimetry. The elastic modulus and tensile strength tests were dete
... Show MoreDensity functional theory calculations are employed to investigate the impact of edifenphos molecule on the reactivity and electronic sensitivity of pure calcium oxide (CaO) nanocluster. The strong adsorption of edifenphos molecule on CaO nanocluster occurs by the sulfur head of the adsorbate, and the amount of the energy of this adsorption is around − 84.40 kcal/mol. The adsorption of edifenphos molecules results in a decrease in the values of Eg of CaO from 4.67 to 3.56 eV, as well as an increase in the electrical conductance. Moreover, the work function of CaO nanocluster is significantly affected, which changes the current of the field emission electron. Eventually, the recovery time is calculated around 99 ms at ambient temperature f
... Show MoreA nonlinear filter for smoothing color and gray images
corrupted by Gaussian noise is presented in this paper. The proposed
filter designed to reduce the noise in the R,G, and B bands of the
color images and preserving the edges. This filter applied in order to
prepare images for further processing such as edge detection and
image segmentation.
The results of computer simulations show that the proposed
filter gave satisfactory results when compared with the results of
conventional filters such as Gaussian low pass filter and median filter
by using Cross Correlation Coefficient (ccc) criteria.
Nowadays, cloud computing has attracted the attention of large companies due to its high potential, flexibility, and profitability in providing multi-sources of hardware and software to serve the connected users. Given the scale of modern data centers and the dynamic nature of their resource provisioning, we need effective scheduling techniques to manage these resources while satisfying both the cloud providers and cloud users goals. Task scheduling in cloud computing is considered as NP-hard problem which cannot be easily solved by classical optimization methods. Thus, both heuristic and meta-heuristic techniques have been utilized to provide optimal or near-optimal solutions within an acceptable time frame for such problems. In th
... Show MoreResearch in consumer science has proven that grocery shopping is a complex and distressing process. Further, the task of generating the grocery lists for the grocery shopping is always undervalued as the effort and time took to create and manage the grocery lists are unseen and unrecognized. Even though grocery lists represent consumers’ purchase intention, research pertaining the grocery lists does not get much attention from researchers; therefore, limited studies about the topic are found in the literature. Hence, this study aims at bridging the gap by designing and developing a mobile app (application) for creating and managing grocery lists using modern smartphones. Smartphones are pervasive and become a necessity for everyone tod
... Show MoreIn his post colonial novel, In the Skin of a lion, the Canadian/Sri Lankan writer,
Michael Ondaatje is so interested in the term "Post colonialism" because he wants to show
that the term doesn't only refer to a period of time that comes after colonialism. In other
words, post colonialism is not only referred to as a literal description of formerly colonial
societies. He deals with the termas a literary genre and an academic construct that describes
the global conditions of a man after a period of colonialism. He shows that post colonialism is
a theory that tries to examine and explore the different styles and faces of European authority
to control the colonized. Ondaatje's attempt through such term is to unmask Europ
In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show More