Background: Nursing interventions tailored to the smoking triggers in patients with non-communicable chronic diseases are essential. However, these interventions are scant due to the nature of factors associated with smoking cessation and the poor understanding of the effect of nurse-led intervention in Iraq.Purpose: This study aimed to determine the dominant smoking triggers and examine the effects of a tailored nursing intervention on smoking behavior in patients with non-communicable chronic diseases.Methods: Convenience samples of 128 patients with non-communicable chronic diseases, male and female patients, who were 18-70 years old, were recruited in this quasi-experimental, randomized comparative trial in the outpatient clinic in one major teaching hospital in Baghdad City, Iraq. The intervention included simple yet specific instructions that were given both orally and in written form to the study samples to enable them to manage their craving to smoke for 6 weeks. The smoking triggers were assessed using Why Do You Smoke questionnaire. Participants were randomly allocated to receive either the nurse-led intervention or standard care. Data were analyzed using descriptive statistics, independent sample t-tests, logistic regression, and two-sided tests.Results: Stress reduction was the dominant smoking trigger among subjects. The percentage of participants who were either able to completely quit smoking or reduce the number of smoked cigarettes per day (n=19, 29.7%; n=28, 43.8%, respectively) was greater in the study group than those in the control group (n=5, 5.8%; n=5, 5.8%, respectively). Study findings demonstrated significant differences in the inability to improve readiness to quit smoking between the intervention group and control group (p=0.000) at the sixth-week follow-up.Conclusion: The tailored nursing intervention was effective for a successful achievement of smoking reduction and cessation among patients with non-communicable chronic diseases, and a potential to equip nurses in clinical settings to support patients to achieve this is recommended.
Abstract—The upper limb amputation exerts a significant burden on the amputee, limiting their ability to perform everyday activities, and degrading their quality of life. Amputee patients’ quality of life can be improved if they have natural control over their prosthetic hands. Among the biological signals, most commonly used to predict upper limb motor intentions, surface electromyography (sEMG), and axial acceleration sensor signals are essential components of shoulder-level upper limb prosthetic hand control systems. In this work, a pattern recognition system is proposed to create a plan for categorizing high-level upper limb prostheses in seven various types of shoulder girdle motions. Thus, combining seven feature groups, w
... Show MoreOwing to their cost-effectiveness and the natural abundance of magnesium, magnesium-ion batteries (MIBs) were introduced as encouraging alternatives to Lithium-ion batteries. Following the successful synthesis of carbon nano-tube, its B and N doped derivatives which were doped with B and N enjoyed the attention of researchers as novel anode materials (AM) for MIBs. Here, we investigated a BC2N nano-tube (BC2NNT) as an encouraging AM for MIBs. To have a deeper understanding of the electrochemical properties, cycling stability, specific capacity (SC) and the adsorption behavior of this nano-tube, first-principles density functional theory computations were performed. By performing NMR calculations, we identified two types of non-aromatic hexa
... Show MoreIn this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these measurement
... Show MoreIn this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show MoreNitroso-R-salt is proposed as a sensitive spectrophotometric reagent for the determination of paracetamol in aqueous solution. The method is based on the reaction of paracetamol with iron(III) and subsequent reaction with nitroso-R-salt to yield a green colored complex with maximum absorption at 720 nm. Optimization of the experimental conditions was described. The calibration graph was linear in the concentration range of 0.1 – 2.0 ?g mL-1 paracetamol with a molar absorptivity of 6.9 × 104 L mol-1 cm-1. The method was successfully applied to the determination of paracetamol in pharmaceutical preparations without any interference from common excipients. The method has been statistically evaluated with British Pharmacopoeia method a
... Show MoreGenerally, radiologists analyse the Magnetic Resonance Imaging (MRI) by visual inspection to detect and identify the presence of tumour or abnormal tissue in brain MR images. The huge number of such MR images makes this visual interpretation process, not only laborious and expensive but often erroneous. Furthermore, the human eye and brain sensitivity to elucidate such images gets reduced with the increase of number of cases, especially when only some slices contain information of the affected area. Therefore, an automated system for the analysis and classification of MR images is mandatory. In this paper, we propose a new method for abnormality detection from T1-Weighted MRI of human head scans using three planes, including axial plane, co
... Show MoreThe current research aims to prepare a proposed Programmebased sensory integration theory for remediating some developmental learning disabilities among children, researchers prepared a Programme based on sensory integration through reviewing studies related to the research topic that can be practicedby some active teaching strategies (cooperative learning, peer learning, Role-playing, and educational stories). The Finalformat consists of(39) training sessions.
Semi-parametric models analysis is one of the most interesting subjects in recent studies due to give an efficient model estimation. The problem when the response variable has one of two values either 0 ( no response) or one – with response which is called the logistic regression model.
We compare two methods Bayesian and . Then the results were compared using MSe criteria.
A simulation had been used to study the empirical behavior for the Logistic model , with different sample sizes and variances. The results using represent that the Bayesian method is better than the at small samples sizes.
... Show More