Preferred Language
Articles
/
dhYRqIkBVTCNdQwCh4uT
Classification of Different Shoulder Girdle Motions for Prosthesis Control Using a Time-Domain Feature Extraction Technique

Abstract—The upper limb amputation exerts a significant burden on the amputee, limiting their ability to perform everyday activities, and degrading their quality of life. Amputee patients’ quality of life can be improved if they have natural control over their prosthetic hands. Among the biological signals, most commonly used to predict upper limb motor intentions, surface electromyography (sEMG), and axial acceleration sensor signals are essential components of shoulder-level upper limb prosthetic hand control systems. In this work, a pattern recognition system is proposed to create a plan for categorizing high-level upper limb prostheses in seven various types of shoulder girdle motions. Thus, combining seven feature groups, which are root mean square, four-order autoregressive, wavelength, slope sign change, zero crossing (ZC), mean absolute value, and cardinality. In this article, the time-domain features were first extracted from the EMG and acceleration signals. Then, the spectral regression (SR) and principal component analysis dimensionality reduction methods are employed to identify the most salient features, which are then passed to the linear discriminant analysis (LDA) classifier. EMG and axial acceleration signal datasets from six intact-limbed and four amputee participants exhibited an average classification error of 15.68 % based on SR dimensionality reduction using the LDA classifier.

Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu May 23 2019
Journal Name
The International Journal Of Artificial Organs
Real-time classification of shoulder girdle motions for multifunctional prosthetic hand control: A preliminary study

In every country in the world, there are a number of amputees who have been exposed to some accidents that led to the loss of their upper limbs. The aim of this study is to suggest a system for real-time classification of five classes of shoulder girdle motions for high-level upper limb amputees using a pattern recognition system. In the suggested system, the wavelet transform was utilized for feature extraction, and the extreme learning machine was used as a classifier. The system was tested on four intact-limbed subjects and one amputee, with eight channels involving five electromyography channels and three-axis accelerometer sensor. The study shows that the suggested pattern recognition system has the ability to classify the sho

... Show More
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Aug 25 2021
Journal Name
Caai Transactions On Intelligence Technology
Scopus (13)
Crossref (11)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Fri Jun 30 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Enhanced Prosthesis Control Through Improved Shoulder Girdle Motion Recognition Using Time-Dependent Power Spectrum Descriptors and Long Short-Term Memory

Surface electromyography (sEMG) and accelerometer (Acc) signals play crucial roles in controlling prosthetic and upper limb orthotic devices, as well as in assessing electrical muscle activity for various biomedical engineering and rehabilitation applications. In this study, an advanced discrimination system is proposed for the identification of seven distinct shoulder girdle motions, aimed at improving prosthesis control. Feature extraction from Time-Dependent Power Spectrum Descriptors (TDPSD) is employed to enhance motion recognition. Subsequently, the Spectral Regression (SR) method is utilized to reduce the dimensionality of the extracted features. A comparative analysis is conducted between the Linear Discriminant Analysis (LDA) class

... Show More
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Ieee Transactions On Human-machine Systems
Scopus (13)
Crossref (11)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Dec 01 2016
Journal Name
2016 Ieee Symposium Series On Computational Intelligence (ssci)
Scopus (33)
Crossref (27)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Aug 01 2016
Journal Name
2016 38th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc)
Scopus (11)
Crossref (9)
Scopus Crossref
View Publication
Publication Date
Wed May 01 2013
Journal Name
Ieee Journal Of Biomedical And Health Informatics
Scopus (286)
Crossref (262)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Jan 01 2020
Journal Name
Ieee Access
Scopus (16)
Crossref (17)
Scopus Clarivate Crossref
View Publication
Publication Date
Thu May 07 2015
Journal Name
Journal Of Infrared, Millimeter, And Terahertz Waves
Scopus (27)
Crossref (24)
Scopus Clarivate Crossref
View Publication