Preferred Language
Articles
/
XBbzj4oBVTCNdQwCiJ_D
Shoulder girdle recognition using electrophysiological and low frequency anatomical contraction signals for prosthesis control
...Show More Authors

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jun 30 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Enhanced Prosthesis Control Through Improved Shoulder Girdle Motion Recognition Using Time-Dependent Power Spectrum Descriptors and Long Short-Term Memory
...Show More Authors

Surface electromyography (sEMG) and accelerometer (Acc) signals play crucial roles in controlling prosthetic and upper limb orthotic devices, as well as in assessing electrical muscle activity for various biomedical engineering and rehabilitation applications. In this study, an advanced discrimination system is proposed for the identification of seven distinct shoulder girdle motions, aimed at improving prosthesis control. Feature extraction from Time-Dependent Power Spectrum Descriptors (TDPSD) is employed to enhance motion recognition. Subsequently, the Spectral Regression (SR) method is utilized to reduce the dimensionality of the extracted features. A comparative analysis is conducted between the Linear Discriminant Analysis (LDA) class

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Sat Oct 22 2022
Journal Name
Aro-the Scientific Journal Of Koya University
Classification of Different Shoulder Girdle Motions for Prosthesis Control Using a Time-Domain Feature Extraction Technique
...Show More Authors

Abstract—The upper limb amputation exerts a significant burden on the amputee, limiting their ability to perform everyday activities, and degrading their quality of life. Amputee patients’ quality of life can be improved if they have natural control over their prosthetic hands. Among the biological signals, most commonly used to predict upper limb motor intentions, surface electromyography (sEMG), and axial acceleration sensor signals are essential components of shoulder-level upper limb prosthetic hand control systems. In this work, a pattern recognition system is proposed to create a plan for categorizing high-level upper limb prostheses in seven various types of shoulder girdle motions. Thus, combining seven feature groups, w

... Show More
View Publication Preview PDF
Crossref (1)
Clarivate Crossref
Publication Date
Thu May 23 2019
Journal Name
The International Journal Of Artificial Organs
Real-time classification of shoulder girdle motions for multifunctional prosthetic hand control: A preliminary study
...Show More Authors

In every country in the world, there are a number of amputees who have been exposed to some accidents that led to the loss of their upper limbs. The aim of this study is to suggest a system for real-time classification of five classes of shoulder girdle motions for high-level upper limb amputees using a pattern recognition system. In the suggested system, the wavelet transform was utilized for feature extraction, and the extreme learning machine was used as a classifier. The system was tested on four intact-limbed subjects and one amputee, with eight channels involving five electromyography channels and three-axis accelerometer sensor. The study shows that the suggested pattern recognition system has the ability to classify the sho

... Show More
View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Al-khwarizmi Engineering Journal
BCI-Based Smart Room Control using EEG Signals
...Show More Authors

In this paper, we implement and examine a Simulink model with electroencephalography (EEG) to control many actuators based on brain waves. This will be in great demand since it will be useful for certain individuals who are unable to access some control units that need direct contact with humans. In the beginning, ten volunteers of a wide range of (20-66) participated in this study, and the statistical measurements were first calculated for all eight channels. Then the number of channels was reduced by half according to the activation of brain regions within the utilized protocol and the processing time also decreased. Consequently, four of the participants (three males and one female) were chosen to examine the Simulink model during di

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Al-khwarizmi Engineering Journal
BCI-Based Smart Room Control using EEG Signals
...Show More Authors

In this paper, we implement and examine a Simulink model with electroencephalography (EEG) to control many actuators based on brain waves. This will be in great demand since it will be useful for certain individuals who are unable to access some control units that need direct contact with humans. In the beginning, ten volunteers of a wide range of (20-66) participated in this study, and the statistical measurements were first calculated for all eight channels. Then the number of channels was reduced by half according to the activation of brain regions within the utilized protocol and the processing time also decreased. Consequently, four of the participants (three males and one female) were chosen to examine the Simulink model duri

... Show More
Crossref
Publication Date
Tue Nov 01 2016
Journal Name
Expert Systems With Applications
Combined influence of forearm orientation and muscular contraction on EMG pattern recognition
...Show More Authors

View Publication
Scopus (150)
Crossref (134)
Scopus Clarivate Crossref
Publication Date
Sat Dec 05 2015
Journal Name
PrzeglĄd Elektrotechniczny
Power Amplifier Frequency Controller Using feedback control techniques for Bio-implanted Devices
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Engineering
EMG-Based Control of Active Ankle-Foot Prosthesis
...Show More Authors

 Most below-knee prostheses are manufactured in Iraq without considering the fast progress in smart prostheses, which can offer movements in the desired directions according to the type of control system designed for this purpose. The proposed design appears to have the advantages of simplicity, affordability, better load distribution, suitability for subjects with transtibial amputation, and viability in countries with people having low socio-economic status. The designed prosthetics consisted of foot, ball, and socket joints, two stepper motors, a linkage system, and an EMG shield. All these materials were available in the local markets in Iraq. The experimental results showed t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Computer, Communication, Control And System Engineering
Recognition of Upper Limb Movements Based on Hybrid EEG and EMG Signals for Human-Robot Interaction
...Show More Authors

Upper limb amputation is a condition that severely limits the amputee’s movement. Patients who have lost the use of one or more of their upper extremities have difficulty performing activities of daily living. To help improve the control of upper limb prosthesis with pattern recognition, non-invasive approaches (EEG and EMG signals) is proposed in this paper and are integrated with machine learning techniques to recognize the upper-limb motions of subjects. EMG and EEG signals are combined, and five features are utilized to classify seven hand movements such as (wrist flexion (WF), outward part of the wrist (WE), hand open (HO), hand close (HC), pronation (PRO), supination (SUP), and rest (RST)). Experiments demonstrate that usin

... Show More
View Publication
Crossref
Publication Date
Wed May 01 2013
Journal Name
Ieee Journal Of Biomedical And Health Informatics
Classification of Finger Movements for the Dexterous Hand Prosthesis Control With Surface Electromyography
...Show More Authors

View Publication
Scopus (294)
Crossref (266)
Scopus Clarivate Crossref