This paper is concerned with pre-test single and double stage shrunken estimators for the mean (?) of normal distribution when a prior estimate (?0) of the actule value (?) is available, using specifying shrinkage weight factors ?(?) as well as pre-test region (R). Expressions for the Bias [B(?)], mean squared error [MSE(?)], Efficiency [EFF(?)] and Expected sample size [E(n/?)] of proposed estimators are derived. Numerical results and conclusions are drawn about selection different constants included in these expressions. Comparisons between suggested estimators, with respect to classical estimators in the sense of Bias and Relative Efficiency, are given. Furthermore, comparisons with the earlier existing works are drawn.
A non-parametric kernel method with Bootstrap technology was used to estimate the confidence intervals of the system failure function of the log-normal distribution trace data. These are the times of failure of the machines of the spinning department of the weaving company in Wasit Governorate. Estimating the failure function in a parametric way represented by the method of the maximum likelihood estimator (MLE). The comparison between the parametric and non-parametric methods was done by using the average of Squares Error (MES) criterion. It has been noted the efficiency of the nonparametric methods based on Bootstrap compared to the parametric method. It was also noted that the curve estimation is more realistic and appropriate for the re
... Show MoreThe Estimation Of The Reliability Function Depends On The Accuracy Of The Data Used To Estimate The Parameters Of The Probability distribution, and Because Some Data Suffer from a Skew in their Data to Estimate the Parameters and Calculate the Reliability Function in light of the Presence of Some Skew in the Data, there must be a Distribution that has flexibility in dealing with that Data. As in the data of Diyala Company for Electrical Industries, as it was observed that there was a positive twisting in the data collected from the Power and Machinery Department, which required distribution that deals with those data and searches for methods that accommodate this problem and lead to accurate estimates of the reliability function,
... Show MoreCompaction curves are widely used in civil engineering especially for road constructions, embankments, etc. Obtaining the precise amount of Optimum Moisture Content (OMC) that gives the Maximum Dry Unit weight gdmax. is very important, where the desired soil strength can be achieved in addition to economic aspects.
In this paper, three peak functions were used to obtain the OMC and gdmax. through curve fitting for the values obtained from Standard Proctor Test. Another surface fitting was also used to model the Ohio’s compaction curves that represent the very large variation of compacted soil types.
The results showed very good correlation between the values obtained from some publ
... Show MoreBig data analysis is essential for modern applications in areas such as healthcare, assistive technology, intelligent transportation, environment and climate monitoring. Traditional algorithms in data mining and machine learning do not scale well with data size. Mining and learning from big data need time and memory efficient techniques, albeit the cost of possible loss in accuracy. We have developed a data aggregation structure to summarize data with large number of instances and data generated from multiple data sources. Data are aggregated at multiple resolutions and resolution provides a trade-off between efficiency and accuracy. The structure is built once, updated incrementally, and serves as a common data input for multiple mining an
... Show MoreMost available methods for unit hydrographs (SUH) derivation involve manual, subjective fitting of
a hydrograph through a few data points. The use of probability distributions for the derivation of synthetic
hydrographs had received much attention because of its similarity with unit hydrograph properties. In this
paper, the use of two flexible probability distributions is presented. For each distribution the unknown
parameters were derived in terms of the time to peak(tp), and the peak discharge(Qp). A simple Matlab
program is prepared for calculating these parameters and their validity was checked using comparison
with field data. Application to field data shows that the gamma and lognormal distributions had fit well.<