This article co;nsiders a shrunken estimator ·Of Al-Hermyari· and
AI Gobuii (.1) to estimate the mean (8) of a normal clistributicm N (8 cr4) with known variance (cr+), when <:I guess value (So) av11il ble about the mean (B) as· an initial estrmate. This estimator is shown to be
more efficient tl1an the class-ical estimators especially when 8 is close to 8•. General expressions .for bias and MSE -of considered estitnator are gi 'en, witeh some examples. Nut.nerical cresdlts, comparisons and
conclusions ate reported.
This paper is concerned with preliminary test double stage shrinkage estimators to estimate the variance (s2) of normal distribution when a prior estimate of the actual value (s2) is a available when the mean is unknown , using specifying shrinkage weight factors y(×) in addition to pre-test region (R).
Expressions for the Bias, Mean squared error [MSE (×)], Relative Efficiency [R.EFF (×)], Expected sample size [E(n/s2)] and percentage of overall sample saved of proposed estimator were derived. Numerical results (using MathCAD program) and conclusions are drawn about selection of different constants including in the me
... Show MoreThis paper is concerned with preliminary test single stage shrinkage estimators for the mean (q) of normal distribution with known variance s2 when a prior estimate (q0) of the actule value (q) is available, using specifying shrinkage weight factor y( ) as well as pre-test region (R). Expressions for the Bias, Mean Squared Error [MSE( )] and Relative Efficiency [R.Eff.( )] of proposed estimators are derived. Numerical results and conclusions are drawn about selection different constants including in these expressions. Comparisons between suggested estimators with respect to usual estimators in the sense of Relative Efficiency are given. Furthermore, comparisons with the earlier existi
... Show MoreThis paper is concerned with pre-test single and double stage shrunken estimators for the mean (?) of normal distribution when a prior estimate (?0) of the actule value (?) is available, using specifying shrinkage weight factors ?(?) as well as pre-test region (R). Expressions for the Bias [B(?)], mean squared error [MSE(?)], Efficiency [EFF(?)] and Expected sample size [E(n/?)] of proposed estimators are derived. Numerical results and conclusions are drawn about selection different constants included in these expressions. Comparisons between suggested estimators, with respect to classical estimators in the sense of Bias and Relative Efficiency, are given. Furthermore, comparisons with the earlier existing works are drawn.
This paper deals with the mathematical method for extracting the Exponential Rayleighh distribution based on mixed between the cumulative distribution function of Exponential distribution and the cumulative distribution function of Rayleigh distribution using an application (maximum), as well as derived different statistical properties for distribution, and present a structure of a new distribution based on a modified weighted version of Azzalini’s (1985) named Modified Weighted Exponential Rayleigh distribution such that this new distribution is generalization of the distribution and provide some special models of the distribution, as well as derived different statistical properties for distribution
Dens itiad ns vcovadoay fnre Dec2isco0D,ia asrn2trcds4 fenve ns 6ocfo ts ida%n2notd, rasr sedno6t(a asrn2trcd fnre sc2a 2cynwnvtrnco co nrs wcd2 /nt sedno6t(a fan(er wtvrcd ﯿ)ﺔ mh Dens r,ia cw asrn2trcds et/a laao vcosnyaday wcd asrn2trno( rea itdt2arads ﻘ cw sn2i%a %noatd da(dassnco 2cya%4 feao t idncd asrn2tra cw rea itdt2arad /t%ua )ﻘm ns t/tn%tl%a4 st, ﻘxh Dens ﻘx ets laao dawadday no srtrnsrnvt% %nradtrudas ts (uass icnor tlcur rea itdt2arad ﻘh Dea aMidassncos wcd Snts4 Oato -9utday 8ddcd )O-8m toy .a%trn/a 8wwnvnaov, cw rea idcicsay asrn2trcds tda clrtnoayh 1u2adnvt% dasu%rs tda idc/nyay feao rea
... Show MoreOur purpose in this paper is to introduce new operators on Hilbert space which is called weakly normal operators. Some basic properties of these operators are studied in this research. In general, weakly normal operators need not be normal operator, -normal operators and quasi-normal operators.