Wireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classification approach, hence strengthening the safety of such networks. Feature extraction process is done by using Linear Regression-Based Principal Component Analysis (LR-PCA). The test results demonstrated that the proposed IGO-ANN method attains the greatest performance in terms of accuracy, end to end delay and packet delivery ratio regarding trusted WBAN nodes classification than certain existing methods.
Linear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.
In this paper we have been focus for the comparison between three forms for classification data belongs
... Show MoreBuilding numerical reservoir simulation model with a view to model actual case requires enormous amount of data and information. Such modeling and simulation processes normally require lengthy time and different sets of field data and experimental tests that are usually very expensive. In addition, the availability, quality and accessibility of all necessary data are very limited, especially for the green field. The degree of complexities of such modelling increases significantly especially in the case of heterogeneous nature typically inherited in unconventional reservoirs. In this perspective, this study focuses on exploring the possibility of simplifying the numerical simulation pr
In this article, the nonlinear problem of Jeffery-Hamel flow has been solved analytically and numerically by using reliable iterative and numerical methods. The approximate solutions obtained by using the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM). The obtained solutions are discussed numerically, in comparison with other numerical solutions obtained from the fourth order Runge-Kutta (RK4), Euler and previous analytic methods available in literature. In addition, the convergence of the proposed methods is given based on the Banach fixed point theorem. The results reveal that the presented methods are reliable, effective and applicable to solve other nonlinear problems.
... Show MoreIn this paper, a computational method for solving optimal problem is presented, using indirect method (spectral methodtechnique) which is based on Boubaker polynomial. By this method the state and the adjoint variables are approximated by Boubaker polynomial with unknown coefficients, thus an optimal control problem is transformed to algebraic equations which can be solved easily, and then the numerical value of the performance index is obtained. Also the operational matrices of differentiation and integration have been deduced for the same polynomial to help solving the problems easier. A numerical example was given to show the applicability and efficiency of the method. Some characteristics of this polynomial which can be used for solvin
... Show MoreGiven the importance of increasing economic openness transport companies’ face various issues arising at present time, this required importing different types of goods with different means of transport. Therefore, these companies pay great attention to reducing total costs of transporting commodities by using numbers means of transport methods from their sources to the destinations. The majority of private companies do not acquire the knowledge of using operations research methods, especially transport models, through which the total costs can be reduced, resulting in the importance and need to solve such a problem. This research presents a proposed method for the sum of Total Costs (Tc) of rows and columns, in order to arrive at the init
... Show MoreThis paper presents a meta-heuristic swarm based optimization technique for solving robot path planning. The natural activities of actual ants inspire which named Ant Colony Optimization. (ACO) has been proposed in this work to find the shortest and safest path for a mobile robot in different static environments with different complexities. A nonzero size for the mobile robot has been considered in the project by taking a tolerance around the obstacle to account for the actual size of the mobile robot. A new concept was added to standard Ant Colony Optimization (ACO) for further modifications. Simulations results, which carried out using MATLAB 2015(a) environment, prove that the suggested algorithm outperforms the standard version of AC
... Show MoreGumbel distribution was dealt with great care by researchers and statisticians. There are traditional methods to estimate two parameters of Gumbel distribution known as Maximum Likelihood, the Method of Moments and recently the method of re-sampling called (Jackknife). However, these methods suffer from some mathematical difficulties in solving them analytically. Accordingly, there are other non-traditional methods, like the principle of the nearest neighbors, used in computer science especially, artificial intelligence algorithms, including the genetic algorithm, the artificial neural network algorithm, and others that may to be classified as meta-heuristic methods. Moreover, this principle of nearest neighbors has useful statistical featu
... Show MoreMobile Wireless sensor networks have acquired a great interest recently due to their capability to provide good solutions and low-priced in multiple fields. Internet of Things (IoT) connects different technologies such as sensing, communication, networking, and cloud computing. It can be used in monitoring, health care and smart cities. The most suitable infrastructure for IoT application is wireless sensor networks. One of the main defiance of WSNs is the power limitation of the sensor node. Clustering model is an actual way to eliminate the inspired power during the transmission of the sensed data to a central point called a Base Station (BS). In this paper, efficient clustering protocols are offered to prolong network lifetime. A kern
... Show More