Preferred Language
Articles
/
bsj-2153
Indirect Method for Optimal Control Problem Using Boubaker Polynomial

In this paper, a computational method for solving optimal problem is presented, using indirect method (spectral methodtechnique) which is based on Boubaker polynomial. By this method the state and the adjoint variables are approximated by Boubaker polynomial with unknown coefficients, thus an optimal control problem is transformed to algebraic equations which can be solved easily, and then the numerical value of the performance index is obtained. Also the operational matrices of differentiation and integration have been deduced for the same polynomial to help solving the problems easier. A numerical example was given to show the applicability and efficiency of the method. Some characteristics of this polynomial which can be used for solving optimal control problems have been deduced and studied for any future work.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Direct Method for Variational Problems Using Boubaker Wavelets

The wavelets have many applications in engineering and the sciences, especially mathematics. Recently, in 2021, the wavelet Boubaker (WB) polynomials were used for the first time to study their properties and applications in detail. They were also utilized for solving the Lane-Emden equation. The aim of this paper is to show the truncated Wavelet Boubaker polynomials for solving variation problems. In this research, the direct method using wavelets Boubaker was presented for solving variational problems. The method reduces the problem into a set of linear algebraic equations. The fundamental idea of this method for solving variation problems is to convert the problem of a function into one that involves a finite number of variables. Diff

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Journal Of Science
Solvability for Optimal Classical Continuous Control Problem Controlling by Quaternary Hyperbolic Boundary Value Problem

    This work is concerned with studying the solvability for optimal classical continuous control quaternary vector problem that controls by quaternary linear hyperbolic boundary value problem. The existence of the unique quaternary state vector solution for the quaternary linear hyperbolic boundary value problem  is studied and demonstrated by employing the method of Galerkin, where the classical continuous control quaternary vector  is Known. Also, the existence theorem of an optimal classical continuous control quaternary vector related to the quaternary linear hyperbolic boundary value problem is demonstrated. The existence of a unique solution to the adjoint quaternary linear hyperbolic boundary value problem a

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon May 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Numerical Solution for Classical Optimal Control Problem Governing by Hyperbolic Partial Differential Equation via Galerkin Finite Element-Implicit method with Gradient Projection Method

     This paper deals with the numerical solution of the discrete classical optimal control problem (DCOCP) governing by linear hyperbolic boundary value problem (LHBVP). The method which is used here consists of: the GFEIM " the Galerkin finite element method in space variable with the implicit finite difference method in time variable" to find the solution of the discrete state equation (DSE) and the solution of its corresponding discrete adjoint equation, where a discrete classical control (DCC) is given.  The gradient projection method with either the Armijo method (GPARM) or with the optimal method (GPOSM) is used to solve the minimization problem which is obtained from the necessary conditi

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed May 25 2022
Journal Name
Iraqi Journal Of Science
The Optimal Control Problem for Triple Nonlinear Parabolic Boundary Value Problem with State Vector Constraints

       In this paper, the classical continuous triple optimal control problem (CCTOCP) for the triple nonlinear parabolic boundary value problem (TNLPBVP) with state vector constraints (SVCs) is studied.  The solvability theorem for the classical continuous triple optimal control vector CCTOCV with the SVCs is stated and proved. This is done under suitable conditions. The mathematical formulation of the adjoint triple boundary value problem (ATHBVP) associated with TNLPBVP is discovered. The Fréchet derivative of the Hamiltonian" is derived.  Under suitable conditions, theorems of necessary  and sufficient conditions for the optimality of the TNLPBVP with the SVCs are stated and proved.    

Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Optimal Control Problem To Robust Nonlinear Descriptor control Systems with Matching Condition

Abstract

    In this paper, the solutions to class of robust non-linear semi-explicit descriptor control systems with matching condition via optimal control strategy are obtained. The optimal control strategy  has been introduced and  developed in the sense that, the optimal control  solution is robust solution to the given non-linear uncertain semi-explicit descriptor control system. The necessary mathematical proofs and remarks as well as  discussions are also proposed. The present approach is step-by-step illustrated by application example to show its effectiveness a and efficiency to compensate  the structure uncertainty in the given semi-explicit (descriptor) control

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Apr 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Constraints Optimal Classical Continuous Control Vector Problem for Quaternary Nonlinear Hyperbolic System

This paper is concerned with the quaternary nonlinear hyperbolic boundary value problem (QNLHBVP) studding constraints quaternary optimal classical continuous control vector (CQOCCCV), the cost function (CF), and the equality and inequality quaternary state and control constraints vector (EIQSCCV). The existence of a CQOCCCV dominating by the QNLHBVP is stated and demonstrated using the Aubin compactness theorem (ACTH) under appropriate hypotheses (HYPs). Furthermore, mathematical formulation of the quaternary adjoint equations (QAEs) related to the quaternary state equations (QSE) are discovere  so as its weak form (WF) . The directional derivative (DD) of the Hamiltonian (Ham) is calculated. The necessary and sufficient conditions for

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Journal Of Science
The Classical Continuous Optimal Control for Quaternary parabolic boundary value problem

     The aim of this paper is to study the quaternary classical continuous optimal control for a quaternary linear parabolic boundary value problems(QLPBVPs). The existence and uniqueness theorem of the continuous quaternary state vector solution  for the weak form of the QLPBVPs with given quaternary classical continuous control vector (QCCCV)  is stated and proved via the Galerkin Method. In addition, the existence theorem of a quaternary classical continuous optimal control vector governinig by the QLPBVPs is stated and demonstrated. The Fréchet derivative for the cost function is derived. Finally, the necessary conditions for the optimality theorem  of the proposed problem is stated and  demonstrated.

Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
Boundary Optimal Control for Triple Nonlinear Hyperbolic Boundary Value Problem with State Constraints

The paper is concerned with the state and proof of the solvability theorem of unique state vector solution (SVS) of triple nonlinear hyperbolic boundary value problem (TNLHBVP), via utilizing the Galerkin method (GAM) with the Aubin theorem (AUTH), when the boundary control vector (BCV) is known. Solvability theorem of a boundary optimal control vector (BOCV) with equality and inequality state vector constraints (EINESVC) is proved. We studied the solvability theorem of a unique solution for the adjoint triple boundary value problem (ATHBVP) associated with TNLHBVP. The directional derivation (DRD) of the "Hamiltonian"(DRDH) is deduced. Finally, the necessary theorem (necessary conditions "NCOs") and the sufficient theorem (sufficient co

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Continuous Classical Optimal Control Problems for Triple Nonlinear Elliptic Boundary Value Problem

     In this research, our aim is to study the optimal control problem (OCP) for triple nonlinear elliptic boundary value problem (TNLEBVP). The Mint-Browder theorem is used to prove the existence and uniqueness theorem of the solution of the state vector for fixed control vector. The existence theorem for the triple continuous classical optimal control vector (TCCOCV) related to the TNLEBVP is also proved. After studying the existence of a unique solution for the triple adjoint equations (TAEqs) related to the triple of the state equations, we derive The Fréchet derivative (FD) of the cost function using Hamiltonian function. Then the theorems of necessity conditions and the sufficient condition for optimality of

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Mixed Optimal Control Vector for a Boundary Value Problem of Couple Nonlinear Elliptic Equations

       In this research, we study the classical continuous Mixed optimal control vector problem dominated by couple nonlinear elliptic PDEs. The existence theorem for the unique state vector solution of the considered couple nonlinear elliptic PDEs for a given continuous classical mixed control vector is stated and proved by applying the Minty-Browder theorem under suitable conditions.  Under suitable conditions, the existence theorem of a classical continuous mixed optimal control vector associated with the considered couple nonlinear elliptic PDEs  is stated and proved.

Scopus (1)
Scopus Crossref
View Publication Preview PDF