By definition, the detection of protein complexes that form protein-protein interaction networks (PPINs) is an NP-hard problem. Evolutionary algorithms (EAs), as global search methods, are proven in the literature to be more successful than greedy methods in detecting protein complexes. However, the design of most of these EA-based approaches relies on the topological information of the proteins in the PPIN. Biological information, as a key resource for molecular profiles, on the other hand, acquired a little interest in the design of the components in these EA-based methods. The main aim of this paper is to redesign two operators in the EA based on the functional domain rather than the graph topological domain. The perturbation mechanism of both crossover and mutation operators is designed based on the direct gene ontology annotations and Jaccard similarity coefficients for the proteins. The results on yeast Saccharomyces cerevisiae PPIN provide a useful perspective that the functional domain of the proteins, as compared with the topological domain, is more consistent with the true information reported in the Munich Information Center for Protein Sequence (MIPS) catalog. The evaluation at both complex and protein levels reveals that feeding the components of the EA with biological information will imply more accurate complex structures, whereas topological information may mislead the algorithm towards a faulty structure.
The emphasis of Master Production Scheduling (MPS) or tactic planning is on time and spatial disintegration of the cumulative planning targets and forecasts, along with the provision and forecast of the required resources. This procedure eventually becomes considerably difficult and slow as the number of resources, products and periods considered increases. A number of studies have been carried out to understand these impediments and formulate algorithms to optimise the production planning problem, or more specifically the master production scheduling (MPS) problem. These algorithms include an Evolutionary Algorithm called Genetic Algorithm, a Swarm Intelligence methodology called Gravitational Search Algorithm (GSA), Bat Algorithm (BAT), T
... Show MoreThis paper proposes a new encryption method. It combines two cipher algorithms, i.e., DES and AES, to generate hybrid keys. This combination strengthens the proposed W-method by generating high randomized keys. Two points can represent the reliability of any encryption technique. Firstly, is the key generation; therefore, our approach merges 64 bits of DES with 64 bits of AES to produce 128 bits as a root key for all remaining keys that are 15. This complexity increases the level of the ciphering process. Moreover, it shifts the operation one bit only to the right. Secondly is the nature of the encryption process. It includes two keys and mixes one round of DES with one round of AES to reduce the performance time. The W-method deals with
... Show MoreThe importance of topology as a tool in preference theory is what motivates this study in which we characterize topologies generating by digraphs. In this paper, we generalized the notions of rough set concepts using two topological structures generated by out (resp. in)-degree sets of vertices on general digraph. New types of topological rough sets are initiated and studied using new types of topological sets. Some properties of topological rough approximations are studied by many propositions.
This study aims to improve the quality of satellites signals in addition to increase accuracy level delivered from handheld GPS data by building up a program to read and decode data of handheld GPS. Where, the NMEA protocol file, which stands for the National Marine Electronics Association, was generated from handheld GPS receivers in real time using in-house design program. The NMEA protocol file provides ability to choose points positions with best status level of satellites such as number of visible satellite, satellite geometry, and GPS mode, which are defined as accuracy factors. In addition to fix signal quality, least squares technique was adopted in this study to minimize the residuals of GPS observations and enh
... Show MoreIn this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise near topological spaces over B. Also, we introduce the concepts of fibrewise near closed and near open topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.
Abstract. One of the fibrewise micro-topological space is one in which the topology is decided through a group of fibre bundles, in comparison to the usual case in normal, fibrewise topological space. The micro-topological spaces draw power from their ability to be used in descriptions of a wide range of mathematical objects. These can be used to describe the topology of a manifold or even the topology of a group. Apart from easy manipulation, the fibrewise micro-topological spaces yield various mathematical applications, but the one being mentioned here is the possibility for geometric investigation of space or group structure. In this essay, we shall explain what fibrewise micro-topological spaces are, indicate why they are useful in math
... Show MoreFibrewise topological spaces theory is a relatively new branch of mathematics, less than three decades old, arisen from algebraic topology. It is a highly useful tool and played a pivotal role in homotopy theory. Fibrewise topological spaces theory has a broad range of applications in many sorts of mathematical study such as Lie groups, differential geometry and dynamical systems theory. Moreover, one of the main objects, which is considered in fibrewise topological spaces theory is connectedness. In this regard, we of the present study introduce the concept of connected fibrewise topological spaces and study their main results.
In this work we define and study new concept of fibrewise topological spaces, namely fibrewise soft topological spaces, Also, we introduce the concepts of fibrewise closed soft topological spaces, fibrewise open soft topological spaces, fibrewise soft near compact spaces and fibrewise locally soft near compact spaces.