It is recognized that organisms live and interact in groups, exposing them to various elements like disease, fear, hunting cooperation, and others. As a result, in this paper, we adopted the construction of a mathematical model that describes the interaction of the prey with the predator when there is an infectious disease, as well as the predator community's characteristic of cooperation in hunting, which generates great fear in the prey community. Furthermore, the presence of an incubation period for the disease provides a delay in disease transmission from diseased predators to healthy predators. This research aims to examine the proposed mathematical model's solution behavior to better understand these elements' impact on an eco-epidemic system. For all time, all solutions were proven to exist, be positive, and be uniformly bounded. The existence conditions of possible equilibrium points were determined. The stability analysis was performed for all conceivable equilibria in the presence and absence of delay. When the feedback time delays reach a critical point, the existence of Hopf bifurcation is examined. The normal form theory and the Centre manifold theorem are commonly used to investigate the dynamic properties of bifurcating cyclic solutions arising from Hopf bifurcations. Some numerical simulations were presented to validate the theoretical conclusions and understand the impact of changing the parameter values.
In this paper two modifications on Kuznetsov model namely on growth rate law and fractional cell kill term are given. Laplace Adomian decomposition method is used to get the solution (volume of the tumor) as a function of time .Stability analysis is applied. For lung cancer the tumor will continue in growing in spite of the treatment.
This paper deals with constructing a model of fuzzy linear programming with application on fuels product of Dura- refinery , which consist of seven products that have direct effect ondaily consumption . After Building the model which consist of objective function represents the selling prices ofthe products and fuzzy productions constraints and fuzzy demand constraints addition to production requirements constraints , we used program of ( WIN QSB ) to find the optimal solution
In this study, we set up and analyze a cancer growth model that integrates a chemotherapy drug with the impact of vitamins in boosting and strengthening the immune system. The aim of this study is to determine the minimal amount of treatment required to eliminate cancer, which will help to reduce harm to patients. It is assumed that vitamins come from organic foods and beverages. The chemotherapy drug is added to delay and eliminate tumor cell growth and division. To that end, we suggest the tumor-immune model, composed of the interaction of tumor and immune cells, which is composed of two ordinary differential equations. The model’s fundamental mathematical properties, such as positivity, boundedness, and equilibrium existence, are exami
... Show MoreE.M. Forster (1879-1970) is one of the important novelists who dealt with the personal and social lives of the people in England during the early beginning of the twentieth century. During his literary career, he developed gradually his views about man and his position in society.
In his first novel, Where Angels Fear to Tread (1902), the focus is laid on local and personal issues in the lives of the characters. It is limited to the relations between neighbours in small communities. Though the setting is shifted to Italy, Forster does not make full use of this shift to present cultural or racial conflicts; rather he limits his plot to the private tr
... Show MoreThe paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.
The development of a new, cheap, efficient, and ecofriendly adsorbents has become an important demand for the treatment of waste water, so nano silica is considered a good choice. A sample of nanosilica (NS) was prepared from sodium silicate as precursor and the nonionic surfactant Tween 20 as a template. The prepared sample was characterized using various characterization techniques such as FT-IR, AFM, SEM and EDX analysis. The spectrum of FTIR confirms the presence of silica in the sample, while SEM analysis of sample shows nanostructures with pore ranging (2-100nm).The adsorptive properties of this sample were studied by removing Congo red dye (CR) from aqueous solution. Batch experimental methods were carried o
... Show MoreBackground: The displacement of artificial teeth during complete denture construction presents major processing errors in the occlusal vertical dimension which were verified at the previous trial denture stage. The aim of this study was to assess the effect of delay in processing after final flask closure and tension application on the vertical acrylic and porcelain teeth displacement of complete dentures constructed from heat cured acrylic and the results were compared with the conventional processing method. Materials and methods: forty samples of identical maxillary complete dentures were constructed from heat polymerized acrylic resin. These samples were subdivided into the following experimental subgroups in which each subgroup contai
... Show MoreAn efficient modification and a novel technique combining the homotopy concept with Adomian decomposition method (ADM) to obtain an accurate analytical solution for Riccati matrix delay differential equation (RMDDE) is introduced in this paper . Both methods are very efficient and effective. The whole integral part of ADM is used instead of the integral part of homotopy technique. The major feature in current technique gives us a large convergence region of iterative approximate solutions .The results acquired by this technique give better approximations for a larger region as well as previously. Finally, the results conducted via suggesting an efficient and easy technique, and may be addressed to other non-linear problems.
This study presents a practical method for solving fractional order delay variational problems. The fractional derivative is given in the Caputo sense. The suggested approach is based on the Laplace transform and the shifted Legendre polynomials by approximating the candidate function by the shifted Legendre series with unknown coefficients yet to be determined. The proposed method converts the fractional order delay variational problem into a set of (n + 1) algebraic equations, where the solution to the resultant equation provides us the unknown coefficients of the terminated series that have been utilized to approximate the solution to the considered variational problem. Illustrative examples are given to show that the recommended appro
... Show MoreThe aim of this paper is to know the persuasive methods and public relations strategies in building the reputation of the United Arab Emirates, since the UAE is progressing among the international indicators in good reputation. The researcher used the survey method, using the content analysis tool, to analyze the publications of the UAE Ministry of Foreign Affairs and International Cooperation for the period from 10/1/2021 to 12/31/2021.The researcher reached a set of results, the most important of which are: The UAE Foreign Ministry relied on public relations strategies in order to build a good reputation for the country, as it focused on the media strategy and gave little importance to the consensus-building strategy, as well as focuse
... Show More