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Abstract: In this study, we set up and analyze a cancer growth model that integrates a chemotherapy 

drug with the impact of vitamins in boosting and strengthening the immune system. The aim of this 

study is to determine the minimal amount of treatment required to eliminate cancer, which will help 

to reduce harm to patients. It is assumed that vitamins come from organic foods and beverages. The 

chemotherapy drug is added to delay and eliminate tumor cell growth and division. To that end, 

we suggest the tumor-immune model, composed of the interaction of tumor and immune cells, 

which is composed of two ordinary differential equations. The model’s fundamental mathematical 

properties, such as positivity, boundedness, and equilibrium existence, are examined. The equilib-

rium points’ asymptotic stability is analyzed using linear stability. Then, global stability and persis-

tence are investigated using the Lyapunov strategy. The occurrence of bifurcations of the model, 

such as of trans-critical or Hopf type, is also explored. Numerical simulations are used to verify the 

theoretical analysis. The Runge–Kutta method of fourth order is used in the simulation of the model. 

The analytical study and simulation findings show that the immune system is boosted by regular 

vitamin consumption, inhibiting the growth of tumor cells. Further, the chemotherapy drug con-

tributes to the control of tumor cell progression. Vitamin intake and chemotherapy are treated both 

individually and in combination, and in all situations, the minimal level required to eliminate the 

cancer is determined. 

Keywords: tumor-immune model; cancer growth model; chemotherapy drug; boosting the immune 

system 
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1. Introduction 

Mathematical modeling can be used in our life to calculate a wide range of issues 

such as ecology, biology, and epidemiology [1]. Mathematical models can predict epidem-

ics by employing fundamental assumptions of statistics and mathematics to determine 

infectious disease parameters and quantify the impact of interventions such as mass vac-

cination campaigns [2]. In particular, in the USA, the National Cancer Institute estimated 

that cancer survivors will be about 24.4% of all cancer patients in 2023 [3]. 

Cancer is a complex disease involving various ways in which aberrant cells can in-

teract with the environment around them [4]. Cancer develops when the body’s immune 

cells cannot stop the proliferation of aberrant cells. When this happens, the body cannot 
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control the formation of abnormal cells [5]. Treating cancer with surgery, radiation, chem-

otherapy, immunotherapy, and hormone therapy is prominently used. These treatments 

can be administered singly or in combination with two or more of the modalities men-

tioned above [6–11]. Chemotherapy is a form of treatment that makes extensive use of 

medications that have been chemically formulated [12]. Recently, there has been a sharp 

increase in interest in the mathematical modeling of tumor-immune dynamics, and many 

modeling methodologies have been employed to characterize these phenomena. Many 

tumor-immune models have been created using various types of equations, such as delay 

differential equations, ordinary differential equations, and partial differential equations, 

to formulate cancer models and see how tumor development affects the dynamics of other 

cells [13]. These models have led to the development of novel cancer medicines [1,12,14]. 

For example, Alqudah used an autonomous system to formulate a model of chemother-

apy stem cells to treat cancer. She concludes that the treatments’ effects might assist in 

increasing the pace of effector cells to affect the immune system, resulting in the decay of 

tumor cells in cancer patients [7]. 

Numerous epidemiological studies have demonstrated the link between elevated 

cancer death rates and environmental changes in diet, pollution, lifestyle, and other vari-

ables. [15–18]. The relationship between a healthy diet, vitamin group, and the strength-

ening of the immune system has been under the microscope recently. It has been demon-

strated that vitamins play an essential part in the regulation of the activity of the immune 

system, which is necessary for the protection of tissues from damage [17,19–21]. Ku-Car-

rillo developed an obesity–tumor model that has highlighted the role played by obesity 

in the tumor’s resistance to chemotherapy [22]. Rambely and his collaborator created a 

healthy immune system model that dynamically depicts how the immune system inhibits 

the progression of aberrant cells into tumors to contrast the analytical results of an un-

healthy immune system model [23]. The numerical simulation of the model in [24] reveals 

that the immune system can be strengthened when an individual consistently consumes 

vitamins, at a daily rate of 16%, as a result of their effect on the body’s response to the 

formation of aberrant cells in the tissue. 

The rate at which tumor cells multiply and disseminate varies significantly from species 

to species. Consequently, the rate at which cancer cells are suppressed or eliminated by the 

immune cell response may also vary. Many different mathematical models have been devel-

oped describing the immune system’s reaction to the suppuration of tumor cells. Most of these 

models have used the linear type of functional response. Some unhealthy behaviors that peo-

ple engage in regularly, such as eating unhealthy food and smoking, can contribute to a re-

duction in the immune system’s performance. Because of this, we cannot utilize the same func-

tional response to describe how well the immune system deals with tumors [25]. In particular, 

Alharbi and her collaborator developed two mathematical models: the first model describes 

how tumor-immune interactions are affected when poor dietary habits compromise the im-

mune system. The second model includes the beneficial effect of vitamin consumption on the 

immune system. They conclude that a patient’s immune system might improve by taking vit-

amins consistently, at a daily rate of 55% [26]. 

In this paper, a cancer–immune–chemotherapy–vitamins model (CICV) governed by 

systems of ordinary differential equations is suggested based on models in [26]. We have mod-

ified Alharbi and Rambely’s model by changing the linear type of functional response to the 

Holling type II in order to describe the elimination of tumor cells by the immune system to 

account for the fact that the immune system may be weak. In addition, we used the Holling 

type III rather than the Holling type II functional response when defining the immune cells’ 

capacity to eradicate tumors. In addition, the impact of chemotherapy treatment of cancer and 

the regular intake of vitamins to support the immune cells is considered. 

The outline for the rest of the paper is arranged as follows. The CICV model is intro-

duced in Section 2. The existence of equilibria is presented in Section 3. In Sections 4 and 

5, the local stability of equilibria and local bifurcations are investigated. In Section 6, the 
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numerical simulations of the CICV model are performed. The results of this paper are 

discussed in Section 7. Finally, a conclusion and outlook are given in Section 8. 

2. Description of the Model: 

Consider a system of differential equations (CICV) consisting of tumor cells 𝐶(𝑡) and 

immune cells 𝐼(𝑡), which are presented as 

𝑑𝐶

𝑑𝑡
= 𝑟1𝐶(1 − 𝑟2𝐶) −

𝛼1𝐶𝐼

𝑘1 + 𝐶
− 𝛽1𝐶 = 𝑓1(𝐶, 𝐼),

𝑑𝐼

𝑑𝑡
= 𝛿 − 𝛼2𝐶𝐼 +

𝛼3𝐶
2𝐼

𝐶2 + 𝑘2
− 𝛽2𝐼 + 𝛾 = 𝑓2(𝐶, 𝐼),

}
 
 

 
 

 (1) 

with the initial conditions 𝐶(0) = 𝐶0 ≥ 0, 𝐼(0) = 𝐼0 ≥ 0. In the first equation of system (1), 

the term 𝑟1𝐶(1 − 𝑟2𝐶) represents the logistic growth of tumor cells with the growth rate 𝑟1 

and cancer cell capacity 𝑟2. The second term 
𝛼1𝐶𝐼

𝑘1+𝐶
 of Michaelis–Menten form models the 

killing of tumor cells by immune cells. The final term 𝛽1𝐶 represents the killing of tumor 

cells due to chemotherapy. In the second equation, 𝛿 is the constant source at which im-

mune cells are produced. 𝛼2𝐶𝐼 models the suppression of the activity of the immune cells 

due to the action and rapid division of the tumor cells. The term 
𝛼3𝐶

2𝐼

𝐶2+𝑘2
 of Holling type III 

refers to the presence of tumor cells that incite the immune system’s reaction. 𝛽2𝐼 signifies 

the decay of immune cells due to natural death and chemotherapy. The last term 𝛾 repre-

sents the increase of immune cells due to taking supplement vitamins regularly at a con-

stant rate. All parameters for the tumor–immune–chemotherapy drug–vitamins model 

(CICV) are assumed to be positive and are clearly described in Table 1. 

Table 1. Explanation of CICV system’s parameters. 

Parameter Explanation Values Source 

𝑟1 Tumor cell growth rate 0.4426 (day−1) [26] 

𝑟2 Tumor cell capacity 0.4 (cell−1) [26] 

𝛼1 Tumor clearance rate 0.1469 (cell−1) [26] 

𝑘1 The half-life of tumor cells  0.76 (day−1) estimated 

𝛽1 The decay rate of the tumor cells due to taking chemotherapy 0.2 (cell−1 day−1) estimated 

𝛿 The number of immune cells that are regularly produced in the body 0.7 (cell−1) [26] 

𝛽2 
The natural death rate of immune cells and decay rate of the immune cells 

killed by chemotherapy 
0.57 (cell−1 day−1) [26] 

𝛼2 
Rate of suppression of immune cells due to the activity and rapid division of 

the tumor cells 
0.3634 (cell−1) [26] 

𝛼3 Immune cells’ rate of reaction and capacity to obliterate tumor cells 0.7829 (cell−1) [26] 

𝑘2 The half-life of immune cells 0.8620 (day−1) [26] 

𝛾 The rate of effectiveness of vitamins on immune cells 0.5463 (dose) [26] 

Figure 1 exemplifies the schematic sketch of the CICV model under examination. 
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Figure 1. Schematic sketch of the CICV system. 

The right-hand side of the CICV system is entirely continuous and differentiable on 

𝑅+
2 = {(𝐶, 𝐼): 𝐶 ≥ 0, 𝐼 ≥ 0}  and hence locally Lipschitzian [27]; therefore, the solution 

(𝐶(𝑡), 𝐼(𝑡)) of the CICV model with initial conditions 𝐶(0) = 𝐶0 ≥ 0, 𝐼(0) = 𝐼0 ≥ 0 exists, 

and it is unique. 

Theorem 1. All the solutions (𝐶(𝑡), 𝐼(𝑡)) of system (1), which start in 𝑅+
2 , will remain in 𝑅+

2 . 

Proof. By integrating the first function of the CICV model for 𝐶(𝑡) and with a positive 

initial condition (𝐶0, 𝐼0), we obtain 

𝐶(𝑡) = 𝐶0 𝑒𝑥𝑝 {∫ [𝑟1 − 𝛽1 − 𝑟1𝑟2𝐶(𝑠) −
𝛼1𝐼(𝑠)

𝑘1 + 𝐶(𝑠)
] 𝑑𝑠

𝑡

0

} ≥ 0  

Then, 

𝑑𝐼 = (
𝛼3𝐶

2𝐼

𝐶2 + 𝑘2
− 𝛼2𝐶𝐼 − 𝛽2𝐼 + 𝛿 + 𝛾)𝑑𝑡  

𝐼 =

(

 
 
𝛼3 [𝐶0𝑒

∫ [𝑟1−𝛽1−𝑟1𝑟2𝐶(𝑠)−
𝛼1𝐼(𝑠)
𝑘1+𝐶(𝑠)

]𝑑𝑠
𝑡
0 ]

2

𝐼

[𝐶0𝑒
∫ [𝑟1−𝛽1−𝑟1𝑟2𝐶(𝑠)−

𝛼1𝐼(𝑠)
𝑘1+𝐶(𝑠)

]𝑑𝑠
𝑡
0 ]

2

+ 𝑘2

− 𝐶0𝑒
∫ [𝑟1−𝛽1−𝑟1𝑟2𝐶(𝑠)−

𝛼1𝐼(𝑠)
𝑘1+𝐶(𝑠)

]𝑑𝑠
𝑡
0 𝛼2𝐼 − 𝛽2𝐼 + 𝛿 + 𝛾

)

 
 
𝑑𝑡  

𝑑𝐼 =

(

 
 
𝛼3 [𝐶0𝑒

∫ [𝑟1−𝛽1−𝑟1𝑟2𝐶(𝑠)−
𝛼1𝐼(𝑠)
𝑘1+𝐶(𝑠)

]𝑑𝑠
𝑡
0 ]

2

𝐼

[𝐶0𝑒
∫ [𝑟1−𝛽1−𝑟1𝑟2𝐶(𝑠)−

𝛼1𝐼(𝑠)
𝑘1+𝐶(𝑠)

]𝑑𝑠
𝑡
0 ]

2

+ 𝑘2

− 𝐶0𝑒
∫ [𝑟1−𝛽1−𝑟1𝑟2𝐶(𝑠)−

𝛼1𝐼(𝑠)
𝑘1+𝐶(𝑠)

]𝑑𝑠
𝑡
0 𝛼2𝐼 − 𝛽2𝐼 + 𝛿 + 𝛾

)

 
 
𝑑𝑡  

Consequently, after dropping the non-negative quantities, this yields 

𝑑𝐼 ≥

(

 
 
𝛼3 [𝐶0𝑒

∫ [𝑟1−𝛽1−𝑟1𝑟2𝐶(𝑠)−
𝛼1𝐼(𝑠)
𝑘1+𝐶(𝑠)

]𝑑𝑠
𝑡
0 ]

2

𝐼

[𝐶0𝑒
∫ [𝑟1−𝛽1−𝑟1𝑟2𝐶(𝑠)−

𝛼1𝐼(𝑠)
𝑘1+𝐶(𝑠)

]𝑑𝑠
𝑡
0 ]

2

+ 𝑘2

− 𝐶0𝑒
∫ [𝑟1−𝛽1−𝑟1𝑟2𝐶(𝑠)−

𝛼1𝐼(𝑠)
𝑘1+𝐶(𝑠)

]𝑑𝑠
𝑡
0 𝛼2𝐼 − 𝛽2𝐼

)

 
 
𝑑𝑡  

Now, by integrating the above equation for 𝐼(𝑡), we obtain 

𝐼(𝑡) ≥ 𝐼0 𝑒𝑥𝑝

{
 
 

 
 

∫

[
 
 
 
 𝛼3 [𝐶0𝑒

∫ [𝑟1−𝛽1−𝑟1𝑟2𝐶(𝑠)−
𝛼1𝐼(𝑠)
𝑘1+𝐶(𝑠)

]𝑑𝑠
𝑡
0 ]

2

[𝐶0𝑒
∫ [𝑟1−𝛽1−𝑟1𝑟2𝐶(𝑠)−

𝛼1𝐼(𝑠)
𝑘1+𝐶(𝑠)

]𝑑𝑠
𝑡
0 ]

2

+ 𝑘2

− 𝛼2𝐶0𝑒
∫ [𝑟1−𝛽1−𝑟1𝑟2𝐶(𝑠)−

𝛼1𝐼(𝑠)
𝑘1+𝐶(𝑠)

]𝑑𝑠
𝑡
0 − 𝛽2

]
 
 
 
 

𝑑𝑠
𝑡

0

}
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Thus, from the definition of the exponential function, any solution 𝐶(𝑡), 𝐼(𝑡)) that 

starts inside of 𝑅+
2  with positive initial conditions (𝐶0, 𝐼0) will remain in 𝑅+

2 . □ 

Theorem 2. Assume that the following conditions hold. 

𝑟1 > 𝛽1

𝛽2 >
𝛼3ℓ1

2

ℓ1
2+𝑘2

}. ( (2) 

Then, all solutions (𝐶(𝑡), 𝐼(𝑡)) of system (1) with positive initial values (𝐶0, 𝐼0) which start 

in 

𝜁 = {(𝐶, 𝐼) ∈ 𝑅+
2 , 𝐶 ≤ ℓ1, 𝐼 ≤

𝛿 + 𝛾

ℓ2
}  

where 

ℓ1 =
(𝑟1 − 𝛽1)

𝑟1𝑟2
  

and 

ℓ2 = 𝛽2 −
𝛼3ℓ1

2

ℓ1
2 + 𝑘2

  

are uniformly bounded. 

Proof. From the first equation of the CICV model, we obtain 

𝑑𝐶

𝑑𝑡
≤ (𝑟1 − 𝛽1)𝐶 − 𝑟1𝑟2𝐶

2  

Using Bernoulli’s method, we obtain 

(𝑡) ≤
(𝑟1 − 𝛽1)

𝑟1𝑟2[1 − 𝑒
−(𝑟1−𝛽1)𝑡] + (𝑟1 − 𝛽1)(1/𝐶(0))𝑒

−(𝑟1−𝛽1)𝑡
  

As 𝑡 → ∞, the following is obtained 

𝑙𝑖𝑚
𝑡→∞

sup 𝐶(𝑡) ≤
(𝑟1 − 𝛽1)

𝑟1𝑟2
= ℓ1  

Using the above bound for the tumor cell, the following is obtained by the procedure 

of separation of variables. 

𝑙𝑖𝑚
𝑡→∞

sup 𝐼(𝑡) ≤
𝛿 + 𝛾

ℓ2
  

Consequently, 𝐶(𝑡) and 𝐼(𝑡) will remain bounded. □ 

3. Existence of Equilibria 

To find the equilibria of system (1), we set 

𝑑𝐶

𝑑𝑡
=
𝑑𝐼

𝑑𝑡
= 0  

This system has two non-negative solutions, i.e., steady states, namely, 

1. The cancer-free state 𝑆1 = (0, 𝐼), where 

𝐼 =
𝛿 + 𝛾

𝛽2
  

2. The interaction state 𝑆2 = (𝐶
∗, 𝐼∗), where 

𝐼∗ =
(𝑟1 − 𝛽1 − 𝑟1𝑟2𝐶

∗)(𝑘1 + 𝐶
∗)

𝛼1
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𝐶∗ is the positive root of the following fifth-order polynomial 

𝑃1𝐶
5 + 𝑃2𝐶

4 + 𝑃3𝐶
3 + 𝑃4𝐶

2 + 𝑃5𝐶 + 𝑃6 = 0 (3) 

where 

𝑃1 = 𝑟1𝑟2𝛼2 > 0  

𝑃2 = 𝛼2(𝑟1𝑟2𝑘1 + 𝛽1 − 𝑟1) + 𝑟1𝑟2(𝛽2 − 𝛼3)  

𝑃3 = (𝛽2 − 𝛼3)(𝑟1𝑟2𝑘1 + 𝛽1 − 𝑟1) + 𝑘1𝛼2(𝛽1 − 𝑟1) + 𝑟1𝑟2𝛼2𝑘2  

𝑃4 = 𝑘1(𝛽1 − 𝑟1)(𝛽2 − 𝛼3) + 𝛼2𝑘2(𝑟1𝑟2𝑘1 + 𝛽1 − 𝑟1) + 𝛼1(𝛿 + 𝛾)) + 𝑟1𝑟2𝛽2𝑘2  

𝑃5 = 𝑘1𝑘2𝛼2(𝛽1 − 𝑟1) + 𝛽2𝑘2(𝑟1𝑟2𝑘1 + 𝛽1 − 𝑟1)  

𝑃6 = (𝛽1 − 𝑟1)𝑘1𝑘2𝛽2 + 𝛼1𝑘2(𝛿 + 𝛾)  

The condition 

𝛽1 < 𝑟1(1 − 𝑟2𝐶
∗)  

guarantees that 𝐼∗ > 0. The above condition implies that the immune system breaks down 

if the tumor cells’ decay rate must be less than the tumor growth rate by some amount. 

Now, by applying Descartes’ rule of signs [27], Equation (3) has a unique positive 

root if one of the following conditions is met 

𝑃2 > 0, 𝑃3 > 0, 𝑃4 > 0, 𝑃5 > 0, 𝑃6 < 0  

𝑃2 > 0, 𝑃3 > 0, 𝑃4 > 0, 𝑃5 < 0, 𝑃6 < 0  

𝑃2 > 0, 𝑃3 > 0, 𝑃4 < 0, 𝑃5 < 0, 𝑃6 < 0  

𝑃2 > 0, 𝑃3 < 0, 𝑃4 < 0, 𝑃5 < 0, 𝑃6 < 0  

𝑃2 < 0, 𝑃3 < 0, 𝑃4 < 0, 𝑃5 < 0, 𝑃6 < 0  

The fact that the CICV model has an interaction steady-state indicates a deficiency in 

the immune system. 

4. Stability Analysis 

We compute the Jacobian matrix in order to obtain the local stability of the equilibria 

above 

𝐽(𝐶, 𝐼) =

[
 
 
 
 𝑟1 − 2𝑟1𝑟2𝐶 −

𝑘1𝛼1𝐼

(𝑘1 + 𝐶)
2
− 𝛽1

−𝛼1𝐶

𝑘1 + 𝐶

−𝛼2𝐼 +
2𝑘2𝛼3𝐶𝐼

(𝑘2 + 𝐶
2)2

−𝛼2𝐶 +
𝛼3𝐶

2

𝑘2 + 𝐶
2
− 𝛽2]

 
 
 
 

 (4) 

After computing the Jacobian matrix, the local analyzing behavior of the equilibrium 

points of the CICV model is described in the following theorem. 

Theorem 3. Assume that 

𝑟1 <
𝛼1(𝛿 + 𝛾)

𝑘1𝛽2
+ 𝛽1 (5) 

Then, 𝑆1 is locally asymptotically stable. 

Proof. The Jacobian matrix at 𝑆1 is computed, and it is given as 
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𝐽(𝑆1) =

[
 
 
 
 𝑟1 −

𝛼1(𝛿 + 𝛾)

𝑘1𝛽2
− 𝛽1 0

−𝛼2(𝛿 + 𝛾)

𝛽2
−𝛽2]

 
 
 
 

  

Then, the eigenvalues of 𝐽(𝑆1) are 

𝜆11 = 𝑟1 −
𝛼1(𝛿 + 𝛾)

𝑘1𝛽2
− 𝛽1  

and 

𝜆12 = −𝛽2 < 0  

Clearly 

𝜆11 < 0  

and hence, 𝑆1 is locally asymptotically stable if condition (5) is satisfied. 

It can be realized from condition (5) that the immune system is functioning properly. 

Qualitatively, condition (5) means that the rate of suppression of tumor cells by immune cells 

plus the decay rate of tumor cells will be more than the growth rate of tumor cells 𝑟1. □ 

Theorem 4. Suppose that 

𝑟1 < 2𝑟1𝑟2𝐶
∗ +

𝑘1𝛼1𝐼
∗

(𝑘1 + 𝐶
∗)2

+ 𝛽1 +
𝛿

𝐼∗

(
𝛼1𝐶

∗

𝑘1 + 𝐶
∗
) (

2𝑘2𝛼3𝐶
∗𝐼∗

(𝑘2 + 𝐶
∗2)

2−𝛼2𝐼
∗) > (𝑟1 − 2𝑟1𝑟2𝐶

∗ −
𝑘1𝛼1𝐼

∗

(𝑘1 + 𝐶
∗)2

− 𝛽1) (
𝛿

𝐼∗
)

 

}
 
 

 
 

 (6) 

𝑇hen, 𝑆2 is locally asymptotically stable. 

Proof. The Jacobian matrix at 𝑆2 is computed, and it is given as 

𝐽(𝑆2) =

[
 
 
 
 𝑟1 − 2𝑟1𝑟2𝐶

∗ −
𝑘1𝛼1𝐼

∗

(𝑘1 + 𝐶
∗)2

− 𝛽1
−𝛼1𝐶

∗

𝑘1 + 𝐶
∗

−𝛼2𝐼
∗ +

2𝑘2𝛼3𝐶
∗𝐼∗

(𝑘2 + 𝐶
∗2)

2 −
𝛿

𝐼∗ ]
 
 
 
 

  

Then, computing |𝐽(𝑆2) − 𝐼𝜆| = 0 gives: 

𝜆2 − 𝑇𝑟(𝐽(𝑆2))𝜆 + 𝑑𝑒𝑡(𝐽(𝑆2)) = 0 (7) 

where 

𝑇𝑟(𝐽(𝑆2)) = 𝑟1 − 2𝑟1𝑟2𝐶
∗ −

𝑘1𝛼1𝐼
∗

(𝑘1 + 𝐶
∗)2

− 𝛽1 −
𝛿

𝐼∗
  

𝑑𝑒𝑡(𝐽(𝑆2)) = (𝑟1 − 2𝑟1𝑟2𝐶
∗ −

𝑘1𝛼1𝐼
∗

(𝑘1 + 𝐶
∗)2

− 𝛽1) (−
𝛿

𝐼∗
) + (

𝛼1𝐶
∗

𝑘1 + 𝐶
∗
) (

2𝑘2𝛼3𝐶
∗𝐼∗

(𝑘2 + 𝐶
∗2)

2−𝛼2𝐼
∗)  

Therefore, 𝑆2 is locally asymptotically stable if condition (6) is satisfied. □ 

The above analysis shows that the steady state 𝑆2 of the CICV model is unstable if 

the immune system is weak. In this situation, tumor cells have the potential to divide and 

multiply at a rapid rate. 

Global stability implies that all routes with positive initial conditions eventually drift 

to the system’s attractor. The following two theorems address the global dynamics of the 

CICV model. 
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Theorem 5. 𝑆1 is globally asymptotically stable if the following requirement is met 

𝑟1 < 𝛽1

(
𝛼3𝐶

𝐶2 + 𝑘2
−𝛼2)

2

≤
4𝑟1𝛽2
𝐼

 } (8) 

Proof. Let 𝛶(𝐶, 𝐼) = 𝐶 + [𝐼 − 𝐼 − 𝐼 𝑙𝑛 (
𝐼

𝐼
)] , which is a positive function on 𝐷 = {(𝐶, 𝐼) ∈

𝑅+
2 : 𝐶 ≥ 0, 𝐼 > 0}. Thus, 

𝑑𝛶

𝑑𝑡
=
𝑑𝐶

𝑑𝑡
+ (

𝐼 − 𝐼

𝐼
)
𝑑𝐼

𝑑𝑡
= (𝑟1 − 𝛽1)𝐶 −

𝛼1𝐶𝐼

𝑘1 + 𝐶
−
𝛽2(𝐼 − 𝐼)

2

𝐼
+ [

𝛼3𝐶

𝐶2 + 𝑘2
−𝛼2] 𝐶(𝐼 − 𝐼) − 𝑟1𝑟2𝐶

2  

i.e. 

𝑑𝛶 

𝑑𝑡
 ≤ (𝑟1 − 𝛽1)𝐶 −

𝛼1𝐶𝐼

𝑘1 + 𝐶
− [√

𝛽2
𝐼
(𝐼 − 𝐼) − √𝑟1𝑟2𝐶]

2

  

Then, 
𝑑𝛶

𝑑𝑡
< 0  under condition (8). Hence, 𝛶 is a Lyapunov function [28]. Conse-

quently, 𝑆1 is globally asymptotically stable in 𝐷 if (𝐶, 𝐼) is restricted as in condition (8). □ 

Theorem 6. Suppose that one of the following conditions is satisfied 

𝛼1
(𝑘1 + 𝐶)

2
<
(𝛿 + 𝛾)

𝐶𝐼2
+
𝑟1𝑟2
𝐼

𝛼1
(𝑘1 + 𝐶)

2
>
(𝛿 + 𝛾)

𝐶𝐼2
+
𝑟1𝑟2
𝐼 }
 
 

 
 

 (9) 

Then, 𝑆2 is globally asymptotically stable whenever it exists. 

Proof. For any initial value (𝐶, 𝐼) in the interior of 𝑅+
2 , let 𝑍(𝐶, 𝐼) =

1

𝐶𝐼
. Clearly, 𝑍(𝐶, 𝐼) > 0, 

and it is a 𝐶1 function for all (𝐶, 𝐼) in the interior of 𝑅+
2 . Assume that 

𝑍1(𝐶, 𝐼) = 𝑟1𝐶(1 − 𝑟2𝐶) −
𝛼1𝐶𝐼

𝑘1 + 𝐶
− 𝛽1𝐶  

𝑍2(𝐶, 𝐼) = 𝛿 − 𝛼2𝐶𝐼 +
𝛼3𝐶

2𝐼

𝐶2 + 𝑘2
− 𝛽2𝐼 + 𝛾  

Now, since 

𝑍𝑍1(𝐶, 𝐼) =
𝑟1
𝐼
−
𝑟1𝑟2𝐶

𝐼
−

𝛼1
𝑘1 + 𝐶

−
𝛽1
𝐼

  

𝑍𝑍2(𝐶, 𝐼) =
𝛿 + 𝛾

𝐶𝐼
− 𝛼2 +

𝛼3𝐶

𝐶2 + 𝑘2
−
𝛽2
𝐶

  

we obtain, 

Δ(𝐶, 𝐼) =
𝜕𝑍𝑍1
𝜕𝐶

+
𝜕𝑍𝑍2
𝜕𝐼

= −
𝑟1𝑟2
𝐼
+

𝛼1
(𝑘1 + 𝐶)

2
−
(𝛿 + 𝛾)

𝐶𝐼2
  

It is obvious that Δ(𝐶, 𝐼) ≠ 0, and it does not change the sign if one of the conditions 

in Equation (9) is met. Then, according to the Bendixson–Dulac criterion [29], there is no 

periodic solution in 𝑅+
2 . Since all the solutions of the CICV model are bounded and 𝑆2 is 

the only interior steady state, by using the Poincare–Bendixson theorem [28], 𝑆2 is globally 

asymptotically stable. 
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Persistence denotes the future survival of all system populations. Now, the average Lya-

punov function approach [30] is used to investigate the persistence of the CICV model. □ 

Theorem 7. Assume that the following conditions are satisfied 

𝑟1 >
𝛼1(𝛿 + 𝛾)

𝑘1𝛽2
+ 𝛽1 (10) 

Then, system (1) is uniformly persistent. 

Proof. Define 𝜔(𝐶, 𝐼) = 𝐶𝑥𝐼𝑦 , where 𝑥, 𝑦 are positive constants. Clearly 𝜔(𝐶, 𝐼) > 0 for all 
(𝐶, 𝐼) ∈ 𝑅+

2 , and 𝜔(𝐶, 𝐼) → 0  when one of the variables 𝐶  or 𝐼  approaches zero. Conse-

quently, direct computation gives: 

𝜑(𝐶, 𝐼) =
𝜔′(𝐶, 𝐼)

𝜔(𝐶, 𝐼)
= 𝑥 [𝑟1(1 − 𝑟2𝐶) −

𝛼1𝐼

𝑘1 + 𝐶
− 𝛽1] + 𝑦 [

𝛿 + 𝛾

𝐼
− 𝛼2𝐶 +

𝛼3𝐶
2

𝐶2 + 𝑘2
− 𝛽2]  

Now, we have 

𝜑(𝑆1) = 𝑥 [𝑟1 −
𝛼1(𝛿 + 𝛾)

𝑘1𝛽2
− 𝛽1]  

Hence, according to condition (10), the CICV model is uniformly persistent. □ 

5. Local Bifurcation 

This section investigates the local bifurcation conditions near stable steady states us-

ing Sotomayor’s theorem [30]. For this purpose, the CICV model can be rewritten in the 

following vector form. 

𝑑𝜗

𝑑𝑡
= 𝐹(𝜗)  

with 

𝜗 = [
𝐶
𝐼
]  

and 

𝐹 = [
𝑓1(𝐶, 𝐼)

𝑓2(𝐶, 𝐼)
]  

Now, the Jacobian matrix at any point is given by Equation (4). Then, for any nonzero 

vector ℎ = (ℎ1, ℎ2)
𝑇: 

𝐷𝐹(ℎ, ℎ) =

[
 
 
 
 (𝑟1 − 2𝑟1𝑟2𝐶 −

𝑘1𝛼1𝐼

(𝑘1 + 𝐶)
2
− 𝛽1) ℎ1 −

𝛼1ℎ2𝐶

𝑘1 + 𝐶

(𝛼2𝐼 +
2𝑘2𝛼3𝐶𝐼

(𝑘2 + 𝐶
2)2
) ℎ1 + (−𝛼2𝐶 +

𝛼3𝐶
2

𝑘2 + 𝐶
2
− 𝛽2) ℎ2

]
 
 
 
 

  

and 

𝐷2𝐹(ℎ, ℎ) =

[
 
 
 
 (−2𝑟1𝑟2𝐶 +

2𝑘1𝛼1𝐼

(𝑘1 + 𝐶)
3
) ℎ1 −

𝑘1𝛼1ℎ2
(𝑘1 + 𝐶)

2
−
𝛼1ℎ2𝐶

𝑘1 + 𝐶

(𝛼2𝐼 +
2𝑘2𝛼3𝐶𝐼

(𝑘2 + 𝐶
2)2
)ℎ1 + (−𝛼2𝐶 +

𝛼3𝐶
2

𝑘2 + 𝐶
2
− 𝛽2) ℎ2

]
 
 
 
 

. (11) 

Theorem 8. For the parameter value 𝛽1
∗ = 𝑟1 −

𝛼1(𝛿+𝛾)

𝑘1𝛽2
, the CICV model system, at 𝑆1, has a trans-

critical bifurcation. 

Proof. At 𝛽1
∗ = 𝑟1 −

𝛼1(𝛿+𝛾)

𝑘1𝛽2
, 𝐽(𝑆1) has a zero eigenvalue 𝜆11 = 0. Therefore, 𝐽(𝑆1) at 𝛽1 = 𝛽1

∗ 

becomes 
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𝐽∗(𝑆1) = [

0 0
−𝛼2(𝛿 + 𝛾)

𝛽2
−𝛽2

]  

Let ℎ[1] = (ℎ1
[1]
, ℎ2
[1]
)𝑇  be the eigenvector corresponding to 𝜆11 = 0. Then, (𝐽∗(𝑆1) −

 𝜆11𝐼)ℎ
[1] = 0 gives (ℎ1

[1]
, ℎ2
[1]
)
𝑇

= (1,
−𝛼2(𝛿+𝛾)

𝛽2
2 )

𝑇

. 

Now, let 𝑣[1] = (𝑣1
[1]
, 𝑣2

[1]
)𝑇be the eigenvector corresponding to the eigenvalue 𝜆11 =

0 of the matrix (𝐽∗(𝑆1))
𝑇 . Then, ((𝐽∗(𝑆2))

𝑇 − 𝜆11𝐼)𝑣
[1] = 0. Then, the direct calculation 

gives (𝑣1
[1]
, 𝑣2

[1]
)𝑇 = (1,0)𝑇. 

Subsequently, the following is taken into account to verify that the requirements of 

Sotomayor’s theorem for trans-critical bifurcation are obtained: 

𝜕𝐹

𝜕𝛽1
= 𝐹𝛽1(𝜗, 𝛽1) = (

𝜕𝑓1
𝜕𝛽1

,
𝜕𝑓2
𝜕𝛽1

)
𝑇

= (−𝐶, 0)𝑇  

Therefore, 𝐹𝛽1(𝑆1, 𝛽1
∗) = (0,0)𝑇 , and hence, (𝑣[1])

𝑇
𝐹𝛽1(𝑆1, 𝛽1

∗) = 0. So, the first condi-

tion of trans-critical bifurcation is met. 

Now, 

𝐷𝐹𝛽1(𝜗, 𝛽1) = [
−1 0
0 0

]  

where 𝐷𝐹𝛽1(𝜗, 𝛽1) denotes the derivative of 𝐹𝛽1(𝜗, 𝛽1) with respect to 𝜗 = (𝐶, 𝐼)𝑇. 

Further, 

𝐷𝐹𝛽1(𝑆1, 𝛽1
∗)ℎ[1] = [

−1 0
0 0

] [

1
−𝛼2(𝛿 + 𝛾)

𝛽2
2

] = [
−1
0
]  

(𝑣[1])
𝑇
[𝐷𝐹𝛽1(𝑆1, 𝛽1

∗)ℎ[1]] = (1,0)(−1,0)𝑇 = −1 ≠ 0  

Now, by substituting in (11), it is found that 

𝐷2𝐹(𝑆1, 𝛽1
∗)(ℎ1

[1]
, ℎ2
[1]
) =

[
 
 
 
 
2𝛼1(𝛿 + 𝛾)

𝛽2𝑘1
2 +

𝛼1𝛼2(𝛿 + 𝛾)

𝑘1𝛽2
2

𝛼2(𝛿 + 𝛾)

𝛽2
+
𝛽2𝛼2(𝛿 + 𝛾)

𝛽2
2 ]

 
 
 
 

  

Hence, 

(𝑣[1])
𝑇
𝐷2𝐹(𝑆1, 𝛽1

∗)(ℎ1
[1]
, ℎ2
[1]
) = (1,0) (

2𝛼1(𝛿 + 𝛾)

𝛽2𝑘1
2 +

𝛼1𝛼2(𝛿 + 𝛾)

𝑘1𝛽2
2 ,

𝛼2(𝛿 + 𝛾)

𝛽2
+
𝛽2𝛼2(𝛿 + 𝛾)

𝛽2
2 )

𝑇

=
2𝛼1(𝛿 + 𝛾)

𝛽2𝑘1
2 +

𝛼1𝛼2(𝛿 + 𝛾)

𝑘1𝛽2
2 ≠ 0 

 

Due to Sotomayor’s local bifurcation theorem, the CICV model has a trans-critical 

bifurcation at 𝑆1 with 𝛽 = 𝛽1
∗. □ 

Theorem 9. Assume that the following conditions are satisfied 

𝑟1 > 2𝑟1𝑟2𝐶
∗ + 𝛽1 +

𝛿

𝐼∗
,

𝑑𝑒𝑡(𝐽(𝑆2)) > 0.
} (12) 

Then the CICV model has a Hopf bifurcation at 𝛼1 = 𝛼1
∗. 

Proof. Consider the characteristic equation at 𝑆2 which is given in (7). To validate the con-

ditions for a Hopf bifurcation, we need to verify that 𝑇𝑟(𝐽(𝑆2)) = 0 is satisfied. It is de-

tected that 𝑇𝑟(𝐽(𝑆2)) = 0 gives: 
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𝑟1 − 2𝑟1𝑟2𝐶
∗ −

𝑘1𝛼1𝐼
∗

(𝑘1 + 𝐶
∗)2

− 𝛽1 −
𝛿

𝐼∗
,  

𝛼1
∗ =

(𝑘1 + 𝐶
∗)2

𝑘1𝐼
∗

[𝑟1 − 2𝑟1𝑟2𝐶
∗ − 𝛽1 −

𝛿

𝐼∗
]  

Clearly, 𝛼1
∗ > 0 provided that the first inequality of condition (12) holds. Now, at 

𝛼1 = 𝛼1
∗, the characteristic equation given by Equation (6) is rewritten as 

𝜆2 + 𝑑𝑒𝑡(𝐽(𝑆2)) = 0,  

which has two roots 

𝜆1,2 = ±𝑖√𝑑𝑒𝑡(𝐽(𝑆2))  

Clearly, at 𝛼1 = 𝛼1
∗, there are two purely imaginary eigenvalues 𝜆1 and 𝜆2 which are 

complex conjugates if the second inequality of condition (12) holds. Further, for all values 

of 𝛼1 in a neighborhood of 𝛼1
∗, the roots generally are given by the following formula: 

𝜆1,2 =
𝑡𝑟𝑎𝑐(𝐽(𝑆2)) ± 𝑖√𝑑𝑒𝑡(𝐽(𝑆2))

2
 

 

Further, due to the transversality condition 

𝑑

𝑑𝛼1
[𝑅𝑒(𝜆1,2)]𝛼1=𝛼1∗

=
𝑑

𝑑𝛼1
[
𝑡𝑟𝑎𝑐(𝐽(𝑆2))

2
]
𝛼1=𝛼1

∗

= −
𝑘1𝐼

∗

(𝑘1 + 𝐶
∗)2

≠ 0  

the CICV model has a Hopf bifurcation at 𝛼1 = 𝛼1
∗. □ 

6. Numerical Simulations 

Numerical simulations are carried out in this section to show various dynamic situ-

ations. A fourth-order Runge–Kutta method is used via the ode45 command in MATLAB 

R2021b to attain stable or unstable equilibrium solutions or convergent solutions for the 

CICV model. The simulations of the CICV model were performed over a time interval of 

ninety days, with the parameters defined in Table 1. 

Now, four cases will be taken into account to understand the dynamic behavior of 

the CICV model and evaluate the impact of chemotherapy treatment on tumor suppres-

sion. Then the results of the four cases will be compared. The four cases are 

1. Dynamic behavior of the CICV model without vitamins and chemotherapy. 

In this case, we study the dynamics of the interaction between tumor cells 𝐶(𝑡) and 

immune cells 𝐼(𝑡) when no external therapy is applied (𝛽1 = 𝛾 = 0). We compare various 

situations with treatment to the case without therapy. We also estimate the amount of 

minimum treatment required to eliminate cancer. Figure 2 depicts the behavior of the 

CICV model for the data given in Table 1, with 𝛽1 = 𝛾 = 0. It shows that the CICV model 

has the tumor-free equilibrium point 𝑆1 = (0,1.21) and the unique positive equilibrium 

𝑆2 = (2.24,0.97). Moreover, for a variety of initial values, the solution first begins to in-

crease or decrease for a certain amount of time before it eventually settles down asymp-

totically to 𝑆2 after about thirty days. Further, the number of immune cells gradually de-

creases as the number of tumor cells gradually grows. On the other hand, 𝑆1 shows saddle 

behavior. In light of this, it is also abundantly evident from Case 1 that eliminating tumor 

cells is impossible without a treatment plan. 
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Figure 2. Numerical simulations of the CICV model for the data given in Table 1 with 𝛽1 = 𝛾 = 0. 

(a) Phase portrait of the CICV model. (b) Time series of the CICV model. 

2. Dynamic behavior of the CICV model with vitamins. 

In this case, we study the dynamics of the CICV model when regular vitamin con-

sumption is implemented to strengthen the immune system. Figure 3 illustrates the be-

havior of the CICV model for the data given in Table 1, with 𝛽1 = 0 (without chemother-

apy drug). It shows the solutions for all initial conditions reach the interaction state 𝑆2 =

(1.88,1.97) after about forty days. Further, the number of immune cells, in this case, grad-

ually increases as the number of tumor cells decreases. Even though there is a significant 

reduction in the number of tumor cells compared to Case 1, the immune system still can-

not eliminate all tumor cells. 

 

Figure 3. Numerical simulations of the CICV model for the data given in Table 1 with 𝛽1 = 0. (a) 

Phase portrait of the CICV model. (b) Time series of the CICV model. 

3. Dynamic behavior of the CICV model with chemotherapy. 

In this case, we are going to discuss the dynamics of the CICV model if external ther-

apy (chemotherapy) is applied without vitamin consumption (𝛾 = 0). Figure 4 clearly de-

scribes the global stability behavior of the positive steady state 𝑆2 = (0.62,1.97) of the 

CICV model. Further, it can be concluded that after about forty-five days, the positive 

steady state is reached. Tumor cells are significantly reduced in the body with the use of 

chemotherapy compared with the previous two cases. Additionally, chemotherapy harms 
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the immune cell as well; we can see a reduction in the number of immune cells compared 

with Case 2. In view of the above, more doses are required to reach the tumor-free state. 

 

Figure 4. Numerical simulations of the CICV model for the data given in Table 1 with 𝛾 = 0. (a) 

Phase portrait of the CICV model. (b) Time series of the CICV model. 

4. Dynamic behavior of the CICV model with chemotherapy and vitamins. 

Finally, in the last case, the impact of vitamins and chemotherapy is applied to the 

dynamics of the CICV model. We simulate the CICV model with the parameter values 

presented in Table 1. It is clear from Figure 5 that taking chemotherapy in combination 

with vitamins succeeds in the clearance of tumor cells after about fifty days. There exists 

only the free-tumor equilibrium point 𝑆1 = (0, 2.15) with nodal sink behavior. Addition-

ally, it can be observed that the level of immune cells rises significantly after taking the 

immune system booster. As a result, the CICV model with the parameters given in Table 

1, including 𝛽1 = 0.2 and 𝛾 = 0.5463, loses the persistence, and the tumor-free state shows 

an asymptotically stable behavior. See Figure 5. In view of the above, the patient can reach 

a healthy state when a combination of vitamin intake and chemotherapy is applied. 

 

Figure 5. Numerical simulations of the CICV model for the data given in Table 1. (a) Phase portrait 

of the CICV model. (b) Time series of the CICV model. 

The second target of the computational simulation is to determine the minimum con-

sumption of vitamins and chemotherapy required to reach a healthy state. Figure 6 shows 

the impact of varying the parameters 𝛾 on the CICV model. It is clear that by varying the 

values of 𝛾 and keeping the rest of the parameters as in Table 1, the solution asymptoti-

cally approaches the tumor-free state at 𝛾 ≥ 0.35. In contrast, the solution of the CICV 
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model converges to the interaction state at 𝛾 ≤ 0.34. As a result, 𝛾 = 0.34 is the minimum 

number of vitamins that should be consumed each day to eliminate cancer. 

 

Figure 6. Phase portrait of the CICV model for the data given in Table 1 with 𝛾 =
0.5463, 0.4, 0.35, 0.34 and 0.3. 

Finally, the impact of altering the number of chemotherapy doses is determined in 

Figure 7. It is clear that the trajectory of the CICV model settles down asymptotically to 

the interaction state 𝑆2 for 𝛽1 ≤ 0.12. On the other hand, the system loses persistence and 

approaches the tumor-free state 𝑆1  for 𝛽1 ≥ 0.14. Therefore, 𝛽1 = 0.14 shows the lowest 

dose of chemotherapy required to reach a cancer-free state. 

 

Figure 7. Phase portrait of the CICV model for the data given in Table 1 with 𝛽1 = 0.1, 0.12 and 0.14. 

7. Discussion 

The CICV model dynamics have been considered to investigate the impacts of regu-

lar intakes of vitamins and chemotherapy on the dynamics of tumor-immune interactions. 

The theoretical study showed that the CICV model has two main steady states: the free-

tumor and interaction equilibria. Depending on the choice of parameter values, the two 

equilibrium points can show stable, unstable, or saddle point behavior. We derived results 

both on the local and global behavior of the equilibria. The numerical simulations confirm 

the analytical results. In particular, the threshold values for the trans-critical bifurcation 

are computed, which shows the transition between the persistence of cancer and its erad-

ication. Let us now compare the simulation results of our CICV model with the numerical 
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results presented in [26]. When comparing the results in [26] with our results, the critical 

rate of vitamin intake required to strengthen the immune system so much that it leads to 

the elimination of cancer is the most important metric. The outcome of the numerical sim-

ulation of the model for vitamin intake but without chemotaxis, presented in [26], sug-

gested that a person’s immune system can be strengthened enough to eliminate cancer by 

taking vitamins consistently at a rate of about 55% each day. However, in our system, as 

shown in the numerical simulation (Case 2), the regular use of vitamins, equivalent to 55% 

of the recommended daily allowance, is insufficient to eliminate malignant cells. On the 

other hand, when vitamin intake is integrated with chemotherapy, only a rate of 35% per 

day of vitamin intake is required to eliminate the cancer cells in the body completely. 

8. Conclusions 

This study aims to discover the conditions that lead to eliminating tumor cells in cancer–

immune–chemotherapy–vitamins model. Through the analysis of the CICV model, the exist-

ence of the equilibrium points and their corresponding stability conditions has been deter-

mined. For a specific parameter set, it has been found that the model may have two equilib-

rium states. The first is the tumor-free equilibrium state, meaning that tumor cells will be elim-

inated. The second is the coexisting equilibrium point, which proposes that tumor cells and 

immune cells will coexist with nonzero populations. In this context, the stability of the tumor-

free equilibrium is critical. The stability of the tumor-free equilibrium point means that the 

treatment is successful since the time-dependent solution will reach a cancer-free state. Nu-

merical simulations highlight the importance of boosting the immune cells and taking chem-

otherapy to eliminate tumor cells. We considered the intake of vitamins and chemotherapy 

both individually and in combination, and we established the thresholds required for reaching 

a healthy state. Mathematically, these thresholds correspond to a trans-critical bifurcation. In 

summary, this study shows that applying regular doses of chemotherapy and taking vitamins 

can promote the immune system and inhibit and delay tumor cell growth and division, re-

spectively. The successful implementation of the results in this paper might lead to treatment 

strategies which will help oncologists in practicing cancer treatment. In the future, we plan to 

generalize the CICV model considered here in different directions. We will consider a delay 

differential equation to examine the delayed effects of treatments on boosting immune cells 

and suppressing tumor cell growth. In addition, we will add radiation therapy to the model 

by extending the model to a three-component system. 

Author Contributions: Conceptualization and software, S.J. and M.W.; proofreading and supervi-

sion, M.W.; writing—original draft, S.J., Z.-A.S.A.R., and Y.I.A.A.-Y.; methodology, Z.-A.S.A.R., 

Y.I.A.A.-Y., and A.Z. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Acknowledgments: The authors are grateful to the reviewers for the careful reading of the paper with 

several productive suggestions and their valuable constructive comments, which certainly improved 

the quality of the original paper. The authors are also thankful to the editor for his cooperation. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Akgül, A.; Khoshnaw, S.A. Application of fractional derivative on non-linear biochemical reaction models. Int. J. Intell. Netw. 

2020, 1, 52–58. 

2. Yang, J.; Wang, X.; Zhang, F. A differential equation model of hiv infection of cd t-cells with delay. Discret. Dyn. Nat. Soc. 2008, 

2008, 903678. 



Mathematics 2023, 11, 406 16 of 16 
 

 

3. Giaquinto, A.N.; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics. 

CA. Cancer J. Clin. 2022, 72, 524–541. 

4. Rawla, P.; Sunkara, T.; Gaduputi, V. Epidemiology of pancreatic cancer: Global trends, etiology and risk factors. World J. Oncol. 

2019, 10, 10. 

5. Mayer, H.; Zaenker, K.S.; Der Heiden, U.A. A basic mathematical model of the immune response. Chaos Interdiscip. J. Nonlinear 

Sci. 1995, 5, 155–161. 

6. Valle, P.A.; Coria, L.N.; Plata, C. Personalized immunotherapy treatment strategies for a dynamical system of chronic 

myelogenous leukemia. Cancers 2021, 13, 2030. 

7. Alqudah, M.A. Cancer treatment by stem cells and chemotherapy as a mathematical model with numerical simulations. Alex. 

Eng. J. 1957, 59, 1953–1957. 

8. Letellier, C.; Sasmal, S.K.; Draghi, C.; Denis, F.; Ghosh, D. A chemotherapy combined with an anti-angiogenic drug applied to 

a cancer model including angiogenesis. Chaos Solitons Fractals 2017, 99, 297–311. 

9. Barros, L.R.C.; Paixão, E.A.; Valli, A.M.P.; Naozuka, G.T.; Fassoni, A.C.; Almeida, R.C. CART math—A Mathematical Model of 

CAR-T Immunotherapy in Preclinical Studies of Hematological Cancers. Cancers 2021, 13, 2941. 

10. Mehdizadeh, R.; Shariatpanahi, S.P.; Goliaei, B.; Peyvandi, S.; Rüegg, C. Dormant tumor cell vaccination: A mathematical model 

of immunological dormancy in triple-negative breast cancer. Cancers 2021, 13, 245. 

11. Simbawa, E. Mechanistic model for cancer growth and response to chemotherapy. Comput. Math. Methods Med. 2017, 2017, 3676295. 

12. Panovska, J.; Byrne, H.M.; Maini, P.K. A theoretical study of the response of vascular tumours to different types of 

chemotherapy. Math. Comput. Model. 2008, 47, 560–579. 

13. Tang, T.-Q.; Shah, Z.; Bonyah, E.; Jan, R.; Shutaywi, M.; Alreshidi, N. Modeling and Analysis of Breast Cancer with Adverse 

Reactions of Chemotherapy Treatment through Fractional Derivative. Comput. Math. Methods Med. 2022, 2022, 5636844. 

14. Ghanbari, B. On the modeling of the interaction between tumor growth and the immune system using some new fractional and 

fractional-fractal operators. Adv. Differ. Equ. 2020, 2020, 585. 

15. Huang, M.; Liu, S.; Song, X.; Zou, X. Control Strategies for a Tumor-Immune System with Impulsive Drug Delivery under a 

Random Environment. Acta Math. Sci. 2022, 42, 1141–1159. 

16. Yang, H.; Tan, Y.; Yang, J.; Liu, Z. Extinction and persistence of a tumor-immune model with white noise and pulsed 

comprehensive therapy. Math. Comput. Simul. 2021, 182, 456–470. 

17. Arshad, S.; Yildiz, T.A.; Baleanu, D.; Tang, Y. The role of obesity in fractional order tumor-immune model. Politehn. Univ. Buchar. 

Sci. Bull. Ser. A Appl. Math. Phys. 2022, 82, 181–196. 

18. Alharbi, S.A.; Rambely, A.S. A New ODE-Based Model for Tumor Cells and Immune System Competition. Mathematics 2020, 8, 1285. 

19. Jhang, W.K.; Kim, D.H.; Park, S.J.; Dong, W.; Liu, X.; Zhu, S.; Lu, D.; Cai, K.; Cai, R.; Li, Q.; Zeng, J. Development of the anti-

cancer food scoring system 2.0: Validation and nutritional analyses of quantitative anti-cancer food scoring model. Nutr. Res. 

Pract. 2020, 14, 32–44. 

20. Khan, H.; Hussain, F.H.; Samad, A. Cure and prevention of diseases with vitamin C into perspective: An overview. J. Crit. Rev. 

2019, 7, 289–293. 

21. Jafari, D.; Esmaeilzadeh, A.; Mohammadi-Kordkhayli, M.; Rezaei, N. Vitamin C and the immune system. In Nutrition and 

Immunity; Springer: Berlin/Heidelberg, Germany, 2019; pp. 81–102. 

22. Ku-Carrillo, R.A.; Delgadillo-Aleman, S.E.; Chen-Charpentier, B.M. Effects of the obesity on optimal control schedules of 

chemotherapy on a cancerous tumor. J. Comput. Appl. Math. 2017, 309, 603–610. 

23. Alharbi, S.A.; Rambely, A.S. A dynamic simulation of the immune system response to inhibit and eliminate abnormal cells. 

Symmetry 2019, 11, 572. 

24. Alharbi, S.A.; Rambely, A.S.; Almatroud, A.O. Dynamic modelling of boosting the immune system and its functions by vitamins 

intervention. Nonlinear Dyn. Syst. Theory 2019, 19, 217–330. 

25. Wei, Y.; Huo, L.; He, H. Research on Rumor-Spreading Model with Holling Type III Functional Response. Mathematics 2022, 10, 632. 

26. Alharbi, S.A.; Rambely, A.S. Dynamic behaviour and stabilisation to boost the immune system by complex interaction between 

tumour cells and vitamins intervention. Adv. Differ. Equ. 2020, 2020, 412. 

27. Hirsch, M.W.; Smale, S.; Devaney, R.L. Differential Equations, Dynamical Systems, and an Introduction to Chaos; Academic Press: 

Cambridge, MA, USA, 2012. 

28. LaSalle, J.P. Stability theory and invariance principles. In Dynamical Systems; Elsevier: Amsterdam, The Netherlands, 1976; pp. 

211–222. 

29. Hartman, P. Ordinary Differential Equations, 2nd ed.; SIAM: Philadelphia, PA, USA, 2002. 

30. Hubbard, J.H.; West, B.H. Differential Equations: A Dynamical Systems Approach: Ordinary Differential Equations; Springer: 

Berlin/Heidelberg, Germany, 2013; Volume 5. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury 

to people or property resulting from any ideas, methods, instructions or products referred to in the content. 


