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A B S T R A C T

We investigate mathematical models of the Hepatitis B and C viruses in the study, considering vaccination
effects into account. By utilising fractional and ordinary differential equations, we prove the existence of equi-
librium and the well-posedness of the solution. We prove worldwide stability with respect to the fundamental
reproduction number. Our numerical techniques highlight the biological relevance and highlight the effect of
fractional derivatives on temporal behaviour. We illustrate the relationships among susceptible, immunised,
and infected populations in our epidemiological model. Using comprehensive numerical simulations, we
analyse the effects of fractional derivatives and highlight solution behaviours. Subsequent investigations will
examine the impact of regional heterogeneity, providing significant perspectives for epidemiological research.
1. Introduction

With symptoms that are frequently similar across different strains,
hepatitis, a virally-induced liver inflammation, poses a serious danger
to world health. The hepatitis B (HBV) and C (HCV) viruses in particu-
lar do a great deal of harm; persistent infections can result in cancer and
liver cirrhosis, and they are the cause of around a million fatalities each
year. Not all treatments work, even after a great deal of research. In
order to comprehend and stop the transmission of hepatitis, mathemat-
ical modelling has become an essential tool. Different features of the
dynamics of infection and treatment approaches have been the focus of
several models that have been put forth. This reflects the broad interest
in addressing this intricate health issue. Studies on HBV using logistic
hepatocyte growth, delay models, optimum control formulations, and
fractional calculus-based techniques are among them.

Hepatitis C virus (HCV) was identified in 1989 as the major agent
of post-transfusion hepatitis previously referred to as non-A, non-B
hepatitis, see Ref. 1. During the replication of the viral genome, er-
rors are frequent and lead to the circulation of a large number of
viral molecular species in the human population. The viral variants
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identified to date are grouped into 7 genotypes which present variable
susceptibilities to treatments. Since the identification of these viruses,
a huge focus by researchers on obtaining proper treatment. Moreover,
numerous mathematical models are considered to study the spread of
the hepatitis virus in the host body. In Ref. 2, the authors considered a
hepatitis B infection model with logistic hepatocyte growth, where the
purpose is to show the asymptotic behaviour of the solution, where the
logistic growth will lead to the existence of Hopf bifurcation. Steffen
and Hews in Ref. 3, proposed and analysed a delay model of hepatitis
B virus infection with logistic hepatocyte growth. In Ref. 4, the authors
considered a hepatitis a infection model with co-infection, where the
optimal control strategy is considered. Farman et al.5 studied the effect
of the treatment on the dynamical hepatitis B model. Different other
approximations are used for predicting the spread of the hepatitis
disease in population for example, Din et al. constructed system of
equation for Hepatitis B disease in sense of Atanganaa–Baleanu Caputo
(ABC) fractional-order derivative6. Friedman and Siewe7, formulated
a mathematical model of hepatitis B virus and liver fibrosis. In Ref. 8
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Fig. 1. Diagram of viral hepatitis model.
Liu et al. studied and simulation a fractional model for the transmission
dynamics of hepatitis B. Khan et al.9,10 analysed and discussed the time
dynamics of hepatitis B under the effect of various infectious periods.
The authors in Ref. 11, suggested a mathematical fractional-order
hepatitis C virus HCV. The mathematical model of hepatitis B virus with
optimal control formulated by Dominic et al. in Ref. 12. Also, Nadia
et al.13 considering a new mathematical model for hepatitis B virus
with asymptomatic carriers. Beside this the fractional calculus played
an important role for descriptions and control of such types of diseases
see Refs. 14–23. We methodically organise our concern, beginning with
the definition and proof of the well-posedness of the mathematical
model. After identifying important variables like equilibria and the
basic reproduction number, we perform studies of both local and global
stability. Furthermore, we present a fractional-order model that offers
a numerical framework for simulating nonlinear temporal dynamics.

2. Formulation of the viral hepatitis model

In this part, we propose the epidemiological mathematical model of
hepatitis viruses ‘‘ B and C ’’ type infection disease. To write this model
by nonlinear differential equations. We suppose that 𝑁(𝑡) represents
the total human population that divided into five classes are: the
susceptible individuals denoted by 𝑆(𝑡) at time 𝑡; individuals who have
been given the hepatitis B vaccine denoted by 𝑉 (𝑡) at time 𝑡; individuals
infected with viral hepatitis B denoted by 𝐼𝐵(𝑡)at time 𝑡; individuals
infected with viral hepatitis C denoted by 𝐼𝐶 (𝑡) at time 𝑡 and final
class is removal individuals denoted by 𝑅(𝑡) at time 𝑡 respectively. Our
assumptions on the transmission of viral hepatitis disease in this work
are illustrated in Fig. 1 and corresponding model nonlinear differential
equations are presented below:
𝑑𝑆
𝑑𝑡 = 𝑏(1 − 𝜃𝐼𝐵) − (𝜇 + 𝜖 + 𝑝 + 𝛽1𝐼𝐵 + 𝛽2𝐼𝐶 )𝑆 + 𝜓𝑉 ,
𝑑𝑉
𝑑𝑡 = 𝜖𝑆 − (𝜇 + 𝜓 + 𝛽3𝐼𝐶 )𝑉 ,
𝑑𝐼𝐵
𝑑𝑡 = (𝑏𝜃 + 𝛽1𝑆 − 𝜇 − 𝑑1 − 𝑟1)𝐼𝐵 + 𝜎𝑝𝑆,
𝑑𝐼𝐶
𝑑𝑡 = (𝛽2𝑆 + 𝛽3𝑉 − 𝜇 − 𝑑2 − 𝑟2)𝐼𝐶 + (1 − 𝜎)𝑝𝑆,
𝑑𝑅
𝑑𝑡 = 𝑟1𝐼𝐵 + 𝑟2𝐼𝐶 − 𝜇𝑅,

(1)

with the non negative initial population size for (1) verifies

𝑆(0) > 0, 𝑉 (0) > 0, 𝐼𝐵(0) ≥ 0, 𝐼𝐶 (0) ≥ 0, 𝑅(0) ≥ 0. (2)

The description of the all parameters of model (1) is given as; the
𝑏 is natural birth. The death rate represented by 𝜇. The 𝛽𝑖, 𝑖 = 1, 2, 3
are the transmission rates between susceptible individuals with infected
individuals as well between vaccinated individuals with infected indi-
viduals by viral hepatitis B respectively. In addition to transmission by
2

direct contact, viral hepatitis B is also transmitted vertically (that is,
there are newborns infected) that represented by (0 ≤ 𝜃 ≤ 1). The
external sources of disease in the environment represented by 𝑝 ≥ 0
with fraction (0 ≤ 𝜎 ≤ 1). The 𝜖 > 0 is vaccine rate and (0 ≤ 𝜓 ≤ 1) is
vaccination failure rate. The 𝑑𝑖, 𝑖 = 1, 2 are death rates due to disease.
The 𝑟𝑖, 𝑖 = 1, 2 are recovery rates from 𝐼𝐵 and 𝐼𝐶 , respectively.

3. Model analysis

In this part, we establish the existence, uniqueness, boundedness
and non-negativity of solutions of model (1) in the following theorems.

Theorem 3.1. For any initial population size satisfying (2), there is a
unique solution of (1). Moreover, the solution is always non-negative for
𝑡 ≥ 0 and remains in ℜ5

+.

Proof. The expressions on the right of all the equations of our model is
continuous and have continuously partial derivative in 𝛤 = (𝑡, 𝑆(𝑡), 𝑉 (𝑡),
𝐼𝐵(𝑡), 𝐼𝐶 (𝑡), 𝑅(𝑡)), then they are Lipschitzian. Then, we guarantees the
existence of a global solution for (1) in ℜ5

+.

3.1. Boundedness

Theorem 3.2. Let 𝑋(𝑡) be the unique solution of (1) for any 𝑡 ≥ 0, then the
solution 𝑋(𝑡) is bounded above, such that 𝑋(𝑡) ∈ 𝛺 where 𝛺 is the feasible
region.

Proof. By adding the left and right equations of model (1), we obtain
that
𝑑𝑁
𝑑𝑡

= 𝑏 − 𝜇𝑁 − 𝑑1𝐼𝐵 − 𝑑2𝐼𝐶 . (3)

Thus,
𝑑𝑁
𝑑𝑡

≤ 𝑏 − 𝜇𝑁.

Applying integration on the preceding inequality, we obtain

𝑁(𝑡) ≤ 𝑁(0)𝑒−𝜇𝑡 + 𝑏
𝜇
(1 − 𝑒−𝜇𝑡),

Hence,

𝑁(𝑡) ≤ 𝑏
𝜇
. (4)

Consequently, 𝛺 is positively invariant. However, if 𝑁(0) > 𝑏∕𝜇,
then either the solution enters 𝛺 in finite time, or 𝑁(𝑡) approach to
𝑏∕𝜇 as 𝑡→ ∞. Hence, 𝛺 is attracting (i.e., all solutions of model (1) in
ℜ5 eventually approach, enter, or stay in 𝛺).
+
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3.2. Positivity

Theorem 3.3. Let the initial points which given in Eq. (2) belonging to
5
+. Then, the corresponding solution set (𝑆(𝑡), 𝑉 (𝑡), 𝐼𝐵(𝑡),

𝐼𝐶 (𝑡), 𝑅(𝑡)) of model (1) is non-negative for all 𝑡 ≥ 0.

Proof. From model (1), we have
𝑑𝑆
𝑑𝑡 ∣𝑆=0 = 𝑏(1 − 𝜃𝐼𝐵) + 𝜓𝑉 > 0, for all 𝐼𝐵 , 𝑉 ≥ 0,
𝑑𝑉
𝑑𝑡 ∣𝑉 =0 = 𝜖𝑆 > 0, for all 𝑆 > 0,
𝑑𝐼𝐵
𝑑𝑡 ∣𝐼𝐵=0 = 𝜎𝑝𝑆 ≥ 0, for all 𝑆 > 0,
𝑑𝐼𝐶
𝑑𝑡 ∣𝐼𝐶=0 = (1 − 𝜎)𝑝𝑆 ≥ 0, for all 𝑆 > 0,
𝑑𝑅
𝑑𝑡 ∣𝑅=0 = 𝑟1𝐼𝐵 + 𝑟2𝐼𝐶 ≥ 0, for all 𝐼𝐵 , 𝐼𝐶 ≥ 0.

Therefore, the solution of the model is positive.
It easy see that, variable 𝑅 is not show in the first four equations of

model (1). So, we can reduction it is to system in below
𝑑𝑆
𝑑𝑡 = 𝑏(1 − 𝜃𝐼𝐵) − (𝜇 + 𝜖 + 𝑝 + 𝛽1𝐼𝐵 + 𝛽2𝐼𝐶 )𝑆 + 𝜓𝑉 ,
𝑑𝑉
𝑑𝑡 = 𝜖𝑆 − (𝜇 + 𝜓 + 𝛽3𝐼𝐶 )𝑉 ,
𝑑𝐼𝐵
𝑑𝑡 = (𝑏𝜃 + 𝛽1𝑆 − 𝜇 − 𝑑1 − 𝑟1)𝐼𝐵 + 𝜎𝑝𝑆,
𝑑𝐼𝐶
𝑑𝑡 = (𝛽2𝑆 + 𝛽3𝑉 − 𝜇 − 𝑑2 − 𝑟2)𝐼𝐶 + (1 − 𝜎)𝑝𝑆.

(5)

4. Model equilibria and effective basic reproduction number of (5)

Clearly, if 𝐼𝐵 = 𝐼𝐶 = 0 with 𝑝 = 0 there is uninfected viral
hepatitis equilibrium point (𝑈𝑉𝐻𝐸) of model (5) and indicate it via
𝑒0 = (𝑆0, 𝑉0, 0, 0), where
{

𝑆0 = 𝑏(𝜇+𝜓)
𝜇(𝜇+𝜖+𝜓) ,

𝑉0 = 𝜖𝑏
𝜇(𝜇+𝜖+𝜓) .

(6)

Therefore, the basic reproduction number of our model (5), which is
enoted by 0 is obtained by using the next generation matrix (i.e., The
aximum eigenvalue of the reproduction number, those computed of

ach disease). Given by

0 = 0𝐵 +0𝐶 , (7)

uch that

0𝐵 =
𝑏𝜃𝜇(𝜇 + 𝜖)(𝜇 + 𝜖 + 𝜓) + 𝑏𝛽1[𝜇(𝜇 + 𝜖 + 𝜓) + 𝜖𝜓]

𝜇(𝜇 + 𝜖)(𝜇 + 𝜖 + 𝜓)(𝜇 + 𝑑1 + 𝑟1)
,

0𝐶 =
𝑏𝛽2[𝜇(𝜇 + 𝜖 + 𝜓) + 𝜖𝜓] + 𝛽3𝜖𝑏(𝜇 + 𝜖)
𝜇(𝜇 + 𝜖)(𝜇 + 𝜖 + 𝜓)(𝜇 + 𝑑2 + 𝑟2)

,

for viral B hepatitis disease and for viral C hepatitis disease respec-
tively.

Clearly, by letting 𝐼𝐵 = 0 we deduce that (5) has a hepatitis 𝐵
virus-free equilibrium point (𝐻𝐵𝑉 𝐹𝐸), with 𝜎 = 0, which is denoted
by 𝑒1 = (𝑆1, 𝑉1, 0, 𝐼𝐶1), where.

⎧

⎪

⎨

⎪

⎩

𝑆1 = 𝑏(𝜇+𝜓+𝛽3𝐼𝐶1)
(𝜇+𝛽3𝐼𝐶1)(𝜇+𝜖+𝑝+𝛽2𝐼𝐶1)+𝜓(𝜇+𝑝+𝛽2𝐼𝐶1)

,

𝑉1 = 𝜖𝑏
(𝜇+𝛽3𝐼𝐶1)(𝜇+𝜖+𝑝+𝛽2𝐼𝐶1)+𝜓(𝜇+𝑝+𝛽2𝐼𝐶1)

.
(8)

Considering that 𝐼𝐶1 is positive then we obtain the following equa-
tion

𝐴1𝐼
3
𝐶1 + 𝐴2𝐼

2
𝐶1 + 𝐴3𝐼𝐶1 + 𝐴4 = 0, (9)

here
𝐴1 = −𝛽2𝛽3(𝜇 + 𝑑2 + 𝑟2) < 0,

𝐴2 = 𝑏𝛽2𝛽3 − (𝜇 + 𝑑2 + 𝑟2)(𝜇𝛽2 + 𝛽3(𝜇 + 𝜖 + 𝑝) + 𝜓𝛽2),

𝐴3 = 𝑏𝛽3(𝜖 + 𝑝) − [𝜇(𝜇 + 𝜖 + 𝑝) + 𝜓(𝜖 + 𝑝)(𝜇 + 𝑑2 + 𝑟2)],

𝐴4 = 𝑏𝑝𝛽3 > 0.

Hence, (9) has a unique positive root that exists if and only if 𝐴2 < 0
or 𝐴 > 0.
3

3

Next, by letting 𝜎 = 1 we deduce that (5) has a hepatitis 𝐶 virus-free
equilibrium point (𝐻𝐶𝑉 𝐹𝐸), denoted 𝑒2 = (𝑆2, 𝑉2, 𝐼𝐵2, 0), with

⎧

⎪

⎨

⎪

⎩

𝑆2 = 𝑏(1−𝜃𝐼𝐵2)(𝜇+𝜓)
𝜇(𝜇+𝜖+𝑝+𝛽1𝐼𝐵2)+𝜓(𝜇+𝑝+𝛽1𝐼𝐵2)

,

𝑉2 = 𝑏(1−𝜃𝐼𝐵2)
𝜇(𝜇+𝜖+𝑝+𝛽1𝐼𝐵2)+𝜓(𝜇+𝑝+𝛽1𝐼𝐵2)

.
(10)

Clearly, 𝑆2 and 𝑉2 are positive if

𝜃𝐼𝐵2 < 1. (11)

Next, we calculated 𝐼𝐵2 which is the positive root of the equation

𝐵1𝐼
2
𝐵2 + 𝐵2𝐼𝐵2 + 𝐵3 = 0, (12)

where

𝐵1 = −𝛽1(𝜇 + 𝜓)(𝜇 + 𝑑1 + 𝑟1) < 0,
𝐵2 = 𝑏[𝜇𝜃(𝜇 + 𝜖 + 𝑝) + 𝜓𝜃(𝜇 + 𝑝) + 𝛽1(𝜇 + 𝜓)] − 𝑏𝑝𝜃(𝜇 + 𝜓)

−(𝜇 + 𝑑1 + 𝑟1)[𝜓(𝜇 + 𝑝) + 𝜇(𝜇 + 𝜖 + 𝑝)],
𝐵3 = 𝑏𝑝(𝜇 + 𝜓) > 0.

hen 𝐼𝐵2 the root of Eq. (12) if and only if 𝐵2 < 0 or 𝐵2 > 0.
At last, model (5) has the endemic equilibrium (𝐸𝐸) and denoted

y 𝑒3 = (𝑆3, 𝑉3, 𝐼𝐵3, 𝐼𝐶3), with.

𝑆3 = 𝑏(1−𝜃𝐼𝐵3)(𝜇+𝜓+𝛽3𝐼𝐶3)
(𝜇+𝜓+𝑝+𝛽3𝐼𝐶3)(𝜇+𝑝+𝛽1𝐼𝐵3+𝛽2𝐼𝐶3)+𝜖(𝜇+𝛽3𝐼𝐶3)

,

𝑉3 = 𝜖𝑏(1−𝜃𝐼𝐵3)
(𝜇+𝜓+𝑝+𝛽3𝐼𝐶3)(𝜇+𝑝+𝛽1𝐼𝐵3+𝛽2𝐼𝐶3)+𝜖(𝜇+𝛽3𝐼𝐶3)

.
(13)

While (𝐼𝐵3, 𝐼𝐶3) is the positive intersection point of the two isoclines

𝑓 (𝐼𝐵 , 𝐼𝐶 ) =
{

(𝑏𝜃 − 𝜇 − 𝑑1 − 𝑟1)[(𝜇 + 𝜓 + 𝛽3𝐼𝐶 )(𝜇 + 𝑝 + 𝛽1𝐼𝐵 + 𝛽2𝐼𝐶 )

+ 𝜖(𝜇 + 𝛽3𝐼𝐶 )]
}

𝐼𝐵
+ 𝑏(𝛽1𝐼𝐵)(1 − 𝜃𝐼𝐵)(𝜇 + 𝜓 + 𝛽3𝐼𝐶 ) = 0, (14)

𝑔(𝐼𝐵 , 𝐼𝐶 ) = 𝑏(1 − 𝜃𝐼𝐵)(𝜇 + 𝜓 + 𝛽3𝐼𝐶 )(𝛽2𝐼𝐶 + (1 − 𝜎)𝑝) + 𝜖𝑏(1 − 𝜃𝐼𝐵)𝛽3𝐼𝐶
−

{

(𝜇 + 𝑑2 + 𝑟2)[(𝜇 + 𝜓 + 𝛽3𝐼𝐶 )(𝜇 + 𝑝 + 𝛽1𝐼𝐵 + 𝛽2𝐼𝐶 )
+ 𝜖(𝜇 + 𝛽3𝐼𝐶 )]

}

𝐼𝐶 = 0.

(15)

Next, if 𝐼𝐶 → 0, we obtain

𝑓 (𝐼𝐵) = 𝐶1𝐼
2
𝐵 + 𝐶2𝐼𝐵 + 𝐶3 = 0, (16)

ith

𝐶1 = −𝛽1(𝜇 + 𝜓)(𝜇 + 𝑑1 + 𝑟1) < 0,
𝐶2 = (𝑏𝜃 − 𝜇 − 𝑟1 − 𝑑1)[(𝜇 + 𝜓)(𝜇 + 𝑝) + 𝜖𝜇] + 𝑏(𝜇 + 𝜓)(𝛽1 − 𝜎𝑝𝜃),
𝐶3 = 𝑏𝑝𝜎(𝜇 + 𝜓) > 0.

(𝐼𝐵) = 𝑏𝑝(𝜇 + 𝜓)(1 − 𝜎)(1 − 𝜃𝐼𝐵) = 0. (17)

Hence, (16) intersects the 𝐼-axis at 𝐼𝐵 which is positive. Also, (17)
ntersects the 𝐼-axis at𝐼𝐵 = 1

𝜃 , which also positive. Uniqueness can be
deduce if the following condition holds (see Fig. 2)

⎧

⎪

⎨

⎪

⎩

𝐶2 < 0,
𝑜𝑟

𝐶2 > 0,
(18)

𝐵̂ < 𝐼𝐵 , (19)

⎧

⎪

⎨

⎪

⎩

𝑑𝐼𝐵
𝑑𝐼𝐶

= − 𝜕𝑓∕𝜕𝐼𝐶
𝜕𝑓∕𝜕𝐼𝐵

< 0,
𝑑𝐼𝐵
𝑑𝐼𝐶

= − 𝜕𝑔∕𝜕𝐼𝐶
𝜕𝑔∕𝜕𝐼𝐵

> 0.
(20)
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Fig. 2. A unique positive intersection point.
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[

w

. Local stability analysis

In this part, the local behaviour of above equilibrium points is
xplored by calculating the model’s (5) Jacobian matrix about an
rbitrary point 𝑒∗ = (𝑆, 𝑉 , 𝐼𝐵 , 𝐼𝐶 ):

(𝑒∗) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−(𝜇 + 𝜖 + 𝑝 + 𝛽1𝐼𝐵 + 𝛽2𝐼𝐶 ) 𝜓 −(𝑏𝜃 + 𝛽1𝑆) −𝛽2𝑆
𝜖 −(𝜇 + 𝜓 + 𝛽3𝐼𝐶 ) 0 −𝛽3𝑉

𝛽1𝐼𝐵 + 𝜎𝑝 0 𝑏𝜃 + 𝛽1𝑆 − 𝑘1 0
𝛽2𝐼𝐶 + (1 − 𝜎)𝑝 𝛽3𝐼𝐶 0 𝛽2𝑆 + 𝛽3𝑉 − 𝑘2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

(21)

here 𝑘1 = 𝜇 + 𝑑1 + 𝑟1 and 𝑘2 = 𝜇 + 𝑑2 + 𝑟2. Now, the Jacobian matrix
21) at (UVHE) is

(𝑒0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−(𝜇 + 𝜖) 𝜓 −(𝑏𝜃 + 𝛽1𝑆0) −𝛽2𝑆0

𝜖 −(𝜇 + 𝜓) 0 −𝛽3𝑉0
0 0 𝑏𝜃 + 𝛽1𝑆0 − (𝜇 + 𝑑1 + 𝑟1) 0
0 0 0 𝛽2𝑆0 + 𝛽3𝑉0 − (𝜇 + 𝑑2 + 𝑟2)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

(22)

Then, the characteristic equation is

[𝑏𝜃+𝛽1𝑆0−(𝜇+𝑑1+𝑟1)−𝜆][𝛽2𝑆0+𝛽3𝑉0−(𝜇+𝑑2+𝑟2)−𝜆][𝜆2+𝑇0𝜆+𝐷0] = 0,

(23)

here
𝑇0 = 2𝜇 + 𝜖 + 𝜓 > 0,
𝐷0 = 𝜇(𝜇 + 𝜓 + 𝜖) > 0.

Hence, the eigenvalues in following

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜆1 = −(𝜇 + 𝜖 + 𝜓),
𝜆2 = −𝜇,
𝜆3 = 𝑏𝜃 + 𝛽1𝑆0 − (𝜇 + 𝑑1 + 𝑟1),
𝜆4 = 𝛽2𝑆0 + 𝛽3𝑉0 − (𝜇 + 𝑑2 + 𝑟2).

It is easy see that, 𝜆𝑖, 𝑖 = 1, 2 have always negative real parts,
whereas 𝜆𝑖, 𝑖 = 3, 4 are negative real parts if 0 < 1. Then, 𝑒0 is (LAS).
But, it is unstable point otherwise.

Also, the Jacobian matrix at (HBVFE) in the following result

𝐽 (𝑒1) =

⎛

⎜

⎜

⎜

⎜

𝑚11 𝑚12 𝑚13 𝑚14
𝑚21 𝑚22 0 𝑚24
0 0 𝑚33 0

⎞

⎟

⎟

⎟

⎟

. (24)
4

⎝

𝑚41 𝑚42 0 𝑚44 ⎠

w

Here
𝑚11 = −(𝜇 + 𝜖 + 𝑝 + 𝛽2𝐼𝐶1) ; 𝑚12 = 𝜓 ; 𝑚13 = −(𝑏𝜃 + 𝛽1𝑆1) ; 𝑚14 = −𝛽2𝑆1

𝑚21 = 𝜖 ; 𝑚22 = −(𝜇 + 𝜓 + 𝛽3𝐼𝐶1) ; 𝑚24 = −𝛽3𝑉1
𝑚33 = 𝑏𝜃 + 𝛽1𝑆1 − (𝜇 + 𝑑1 + 𝑟1) ; 𝑚41 = 𝛽2𝐼𝐶1 + 𝑝 ; 𝑚42 = 𝛽3𝐼𝐶1
𝑚44 = 𝛽2𝑆1 + 𝛽3𝑉1 − (𝜇 + 𝑑2 + 𝑟2) ; 𝑚23 = 𝑚31 = 𝑚23 = 𝑚34 = 𝑚43 = 0.

Direct computations show that this Jacobian matrix (24) has the
following characteristic equation:

[𝑏𝜃 + 𝛽1𝑆1 − (𝜇 + 𝑑1 + 𝑟1) − 𝜆][𝜆3 +𝑀1𝜆
2 +𝑀2𝜆 +𝑀3] = 0, (25)

where
𝑀1 = −(𝑚11 + 𝑚22 + 𝑚44),
𝑀2 = (𝑚11𝑚22 − 𝑚12𝑚21 + 𝑚11𝑚44 − 𝑚14𝑚41 + 𝑚22𝑚44 − 𝑚24𝑚42),
𝑀3 = −(𝑚44(𝑚11𝑚22 − 𝑚12𝑚21) + 𝑚41(𝑚12𝑚24 − 𝑚22𝑚14) + 𝑚42(𝑚21𝑚14 − 𝑚11𝑚24)).

Obviously, one of the eigenvalues is 𝑏𝜃 + 𝛽1𝑆1 − (𝜇 + 𝑑1 + 𝑟1) < 0
when 𝑚33 < 0. The other eigenvalues have negative real parts when
the (𝑅 − 𝐻) conditions are satisfied (i.e. 𝑀𝑖 > 0 for 𝑖 = 1, 3 and
𝑀1𝑀2 −𝑀3 > 0). So, these conditions are true if and only if 𝑚44 < 0
and 𝑚11𝑚22 > 𝑚12𝑚21. Therefore the 𝑒1 of the model (5) is (LAS).

Now, the Jacobian matrix at (HCVFE) in the following result

𝐽 (𝑒2) =

⎛

⎜

⎜

⎜

⎜

⎝

𝑤11 𝑤12 𝑤13 𝑤14
𝑤21 𝑤22 0 𝑤24
𝑤31 0 𝑤33 0
0 0 0 𝑤44

⎞

⎟

⎟

⎟

⎟

⎠

. (26)

Here
𝑤11 = −(𝜇 + 𝜖 + 𝑝 + 𝛽1𝐼𝐵1) ; 𝑤12 = 𝜓 ; 𝑤13 = −(𝑏𝜃 + 𝛽1𝑆2) ; 𝑤14 = −𝛽2𝑆2

𝑤21 = 𝜖 ; 𝑤22 = −(𝜇 + 𝜓) ; 𝑤24 = −𝛽3𝑉2
𝑤31 = 𝛽1𝐼𝐵1 + 𝑝 ; 𝑤33 = 𝑏𝜃 + 𝛽1𝑆2 − (𝜇 + 𝑑1 + 𝑟1) ;
𝑤44 = 𝛽2𝑆2 + 𝛽3𝑉2 − (𝜇 + 𝑑2 + 𝑟2)
𝑤23 = 𝑤32 = 𝑤34 = 𝑤41 = 𝑤42 = 𝑤43 = 0.

Direct computations show that this Jacobian matrix (26) has the
ollowing characteristic equation:

𝛽2𝑆2 + 𝛽3𝑉2 − (𝜇 + 𝑑2 + 𝑟2) − 𝜆][𝜆3 +𝑊1𝜆
2 +𝑊2𝜆 +𝑊3] = 0, (27)

here
𝑊1 = −(𝑤11 +𝑤22 +𝑤33),
𝑊2 = (𝑤11𝑤22 −𝑤12𝑤21 +𝑤11𝑤33 −𝑤13𝑤31 +𝑤22𝑤33),
𝑊3 = −(𝑤33(𝑤11𝑤22 −𝑤12𝑤21) −𝑤22𝑤13𝑤31).

Obviously, one of the eigenvalues is 𝛽2𝑆2 + 𝛽3𝑉2 − (𝜇 + 𝑑2 + 𝑟2) < 0

hen 𝑤44 < 0 The other eigenvalues have negative real parts when
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the (𝑅 − 𝐻) conditions are satisfied (i.e. 𝑊𝑖 > 0 for 𝑖 = 1, 3 and
𝑊1𝑊2 −𝑊3 > 0). So, these conditions are true if and only if 𝑤33 < 0
and 𝑤11𝑤22 > 𝑤12𝑤21. Therefore the 𝑒2 of the model (5) is (LAS).

The last point’s (EE) Jacobian matrix is

𝐽 (𝑒3) =

⎛

⎜

⎜

⎜

⎜

⎝

𝑞11 𝑞12 𝑞13 𝑞14
𝑞21 𝑞22 0 𝑞24
𝑞31 0 𝑞33 0
𝑞41 𝑞42 0 𝑞44

⎞

⎟

⎟

⎟

⎟

⎠

. (28)

Here
𝑞11 = −(𝜇 + 𝜖 + 𝑝 + 𝛽1𝐼𝐵3 + 𝛽2𝐼𝐶3) ; 𝑞12 = 𝜓 ; 𝑞13 = −(𝑏𝜃 + 𝛽1𝑆3)
𝑞14 = −𝛽2𝑆3𝑞21 = 𝜖 ; 𝑞22 = −(𝜇 + 𝜓 + 𝛽3𝐼𝐶3) ; 𝑞24 = −𝛽3𝑉3
𝑞31 = 𝛽1𝐼𝐵3 + 𝜎𝑝 ; 𝑞33 = 𝑏𝜃 + 𝛽1𝑆3 − (𝜇 + 𝑑1 + 𝑟1)
𝑞41 = 𝛽2𝐼𝐶3 + (1 − 𝜎)𝑝 ; 𝑞42 = 𝛽3𝐼𝐶3 ; 𝑞44 = 𝛽2𝑆3 + 𝛽3𝑉3 − (𝜇 + 𝑑2 + 𝑟2).

Applying Gersgorin’s theorem if the condition ∣ 𝑞𝑖𝑖 ∣>
∑4

𝑖=1,
𝑖≠𝑗

∣ 𝑞𝑖𝑗 ∣,
holds. Then, we obtain the eigenvalues of (28) lie in the union of the
following circles in the complex plane:

centre in 𝑞11 + 0𝑖, radius 𝑅1 = 𝑚𝑖𝑛
{

𝑞21 + 𝑞31 + 𝑞41, 𝑞12 + 𝑞13 + 𝑞14
}

;
centre in 𝑞22 + 0𝑖, radius 𝑅2 = 𝑚𝑖𝑛

{

𝑞12 + 𝑞42, 𝑞21 + 𝑞24
}

;
centre in 𝑞33 + 0𝑖, radius 𝑅3 = 𝑚𝑖𝑛

{

𝑞13, 𝑞31
}

;
centre in 𝑞44 + 0𝑖, radius 𝑅4 = 𝑚𝑖𝑛

{

𝑞14 + 𝑞24, 𝑞41 + 𝑞42
}

;
Hence, the Jacobian matrix (28) at (EE), has four eigenvalues with

negative real part when 0 > 1. Therefore the 𝑒3 is (LAS). Otherwise it
is unstable point.

6. Global stability

In this part, the global behaviour of above equilibrium points is
explored by applying the results of Castillo-Chavez’s method24 on
(UVHE). While, the other equilibrium points (HBVFE, HCVFE and EE)
respectively can be find the basin of attraction of them by applying the
LaSalle method25 and building a proper Lyapunov function.

Theorem 6.1. The UVHE point is globally asymptotically stable when
0 < 1, otherwise is unstable.

Proof. Letting 𝑌 = (𝑆, 𝑉 ) be the susceptible class and 𝑍 = (𝐼𝐵 , 𝐼𝐶 )
represent to the viral hepatitis B and C infected. Hence,

𝑑𝑋
𝑑𝑡

= 𝐾(𝑌 ,𝑍) =
{

𝑏(1 − 𝜃𝐼𝐵) − (𝜇 + 𝜖 + 𝑝 + 𝛽1𝐼𝐵 + 𝛽2𝐼𝐶 )𝑆 + 𝜓𝑉
𝜖𝑆 − (𝜇 + 𝜓 + 𝛽3𝐼𝐶 )𝑉 .

If 𝑆 = 𝑆0, 𝑉 = 𝑉0 and 𝐾(𝑌 , 0) = 0, then,

𝑑𝑋
𝑑𝑡

=
{

𝑏 − (𝜇 + 𝜖)𝑆0 + 𝜓𝑉0
𝜖𝑆0 − (𝜇 + 𝜓)𝑉0.

As 𝑡 → ∞, and 𝑌 → 𝑌0. Therefore, 𝑌 = 𝑌0 = (𝑆0, 𝑉0) is globally
asymptotically stable. Now,

𝐵𝑍 − 𝐺̄(𝑌 ,𝑍)

=

⎛

⎜

⎜

⎜

⎝

𝑏𝜃 + 𝛽1𝑆0 − (𝜇 + 𝑑1 + 𝑟1) 0

0 𝛽2𝑆0 + 𝛽3𝑉0 − (𝜇 + 𝑑2 + 𝑟2)

⎞

⎟

⎟

⎟

⎠

.

(

𝐼𝐵
𝐼𝑉

)

−
⎛

⎜

⎜

⎝

𝛽1𝐼𝐵[𝑆0 − 𝑆] + 𝜎𝑃𝑆

𝛽2𝐼𝐶 [𝑆0 − 𝑆] + 𝛽3𝐼𝐶 [𝑉0 − 𝑉 ] + (1 − 𝜎)𝑃𝑆

⎞

⎟

⎟

⎠

.

Hence

𝐵 =
⎛

⎜

⎜

⎝

𝑏𝜃 + 𝛽1𝑆0 − (𝜇 + 𝑑1 + 𝑟1) 0

0 𝛽2𝑆0 + 𝛽3𝑉0 − (𝜇 + 𝑑2 + 𝑟2)

⎞

⎟

⎟

⎠

;

𝑍 =
(

𝐼𝐵
𝐼𝑉

)

5

and

𝐺̄(𝑌 ,𝑍) =
⎛

⎜

⎜

⎝

𝛽1𝐼𝐵[𝑆0 − 𝑆] + 𝜎𝑃𝑆

𝛽2𝐼𝐶 [𝑆0 − 𝑆] + 𝛽3𝐼𝐶 [𝑉0 − 𝑉 ] + (1 − 𝜎)𝑃𝑆

⎞

⎟

⎟

⎠

.

In model (5), 𝑆0 + 𝑉0 ≤ 𝑏
𝜇 , is the bound for the population, clearly,

𝑆, 𝑉 , 𝐼𝐵 , 𝐼𝐶 ≤ 𝑏
𝜇 . Then, 𝐺̄(𝑌 ,𝑍) ≥ 0. Thus, the disease free equilibrium

oint 𝑒0 is globally asymptotically stable for 0 < 1.

Theorem 6.2. The HBVFE, is global asymptotically stable when 0𝐵 ≤
1 < 0, otherwise is unstable.

Proof. To discuss that, we consider the following Lyapunov function

𝐿1 = ∫

𝑆

𝑆1
(1 −

𝑆1
𝑥
)𝑑𝑥 + ∫

𝑉

𝑉1
(1 −

𝑉1
𝑥
)𝑑𝑥 + 𝐼𝐵 + ∫

𝐼𝐶

𝐼𝐶1
(1 −

𝐼𝐶1
𝑥

)𝑑𝑥. (29)

The derivative of 𝐿1(𝑡) corresponding to the model solutions is

𝑑𝐿1
𝑑𝑡

= (1 −
𝑆1
𝑆

)𝑑𝑆
𝑑𝑡

+ (1 −
𝑉1
𝑉

)𝑑𝑉
𝑑𝑡

+
𝑑𝐼𝐵
𝑑𝑡

+ (1 −
𝐼𝐶1
𝐼𝐶

)
𝑑𝐼𝐶
𝑑𝑡

. (30)

In following from direct simplify
(

1 − 𝑆1

𝑆

)

𝑑𝑆
𝑑𝑡

= (1 − 𝑆1

𝑆
)[𝑏(1 − 𝜃𝐼𝐵) − (𝜇 + 𝜖 + 𝑏 + 𝛽1𝐼𝐵 + 𝛽2𝐼𝐶 )𝑆 + 𝜓𝑉 ]

= (1 − 𝑆1

𝑆
)[−𝜃𝑏𝐼𝐵 − (𝜇 + 𝜖 + 𝑝 + 𝛽1𝐼𝐵 + 𝛽2𝐼𝐶 )𝑆 + 𝜓𝑉

+(𝜇 + 𝜖 + 𝑝 + 𝛽2𝐼𝐶1)𝑆1 − 𝜓𝑉1]

= 𝛽2𝑆1𝐼𝐶1[1 −
𝑆1

𝑆
− 𝑆𝐼𝐶

𝑆1𝐼𝐶1
+ 𝐼𝐶

𝐼𝐶1
] + 𝛽1𝑆1𝐼𝐵[1 −

𝑆
𝑆1

− 𝜃𝑏
𝛽1𝑆1

+ 𝜃𝑏
𝛽1𝑆

]

+(𝜇 + 𝜖 + 𝑝)𝑆1[1 −
𝑆1

𝑆
− 𝑆

𝑆1
+ 1] + 𝜓𝑆1𝑉1

𝑆
[1 − 𝑉

𝑉1
− 𝑠

𝑆1
+ 𝑉 𝑆

𝑉1𝑆1
],

(31)

(

1 − 𝑉1
𝑉

)

𝑑𝑉
𝑑𝑡

= (1 − 𝑉1
𝑉
)[𝜖𝑆 − (𝜇 + 𝜓 + 𝛽3𝐼𝐶 )𝑉 ]

= (1 − 𝑉1
𝑉
)[𝜖𝑆 − (𝜇 + 𝜓 + 𝛽3𝐼𝐶 )𝑉 − 𝜖𝑆1 + (𝜇 + 𝜓 + 𝛽3𝐼𝐶1)𝑉1]

= 𝛽3𝑉1𝐼𝐶1[1 −
𝑉1
𝑉

− 𝑉 𝐼𝐶
𝑉1𝐼𝐶1

+ 𝐼𝐶
𝐼𝐶1

] + 𝜖𝑆1𝑉1
𝑉

[1 − 𝑆
𝑆1

− 𝑉
𝑉1

+ 𝑆𝑉
𝑆1𝑉1

]

+ (𝜇 + 𝜓)𝑉1[1 −
𝑉1
𝑉

− 𝑉
𝑉1

+ 1],

(32)

𝑑𝐼𝐵
𝑑𝑡

= [𝑏𝜃 + 𝛽1𝑆 − 𝜇 − 𝑑1 − 𝑟1]𝐼𝐵 , (33)

(

1 − 𝐼𝐶1
𝐼𝐶

)

𝑑𝐼𝐶
𝑑𝑡 = (1 − 𝐼𝐶1

𝐼𝐶
)[(𝛽2𝑆 + 𝛽3𝑉 − 𝜇 − 𝑑2 − 𝑟2)𝐼𝐶 + 𝑝𝑆]

= (1 − 𝐼𝐶1
𝐼𝐶

)[(𝛽2𝑆 + 𝛽3𝑉 − 𝜇 − 𝑑2 − 𝑟2)𝐼𝐶 + 𝑝𝑆
− (𝛽2𝑆1 + 𝛽3𝑉1 − 𝜇 − 𝑑2 − 𝑟2)𝐼𝐶1 − 𝑝𝑆1]

=
𝛽2𝑆1𝐼2𝐶1
𝐼𝐶

[1 − 𝐼𝐶
𝐼𝐶1

− 𝑆𝐼𝐶
𝑆1𝐼𝐶1

+
𝑆𝐼2𝐶
𝑆1𝐼2𝐶1

]

+
𝛽3𝑉1𝐼2𝐶1
𝐼𝐶

[1 − 𝐼𝐶
𝐼𝐶1

− 𝑉 𝐼𝐶
𝑉1𝐼𝐶1

+
𝑉 𝐼2𝐶
𝑉1𝐼2𝐶1

]

+ (𝜇 + 𝑑2 + 𝑟2)[1 −
𝐼𝐶1
𝐼𝐶

− 𝐼𝐶
𝐼𝐶1

+ 1]

+ 𝑝𝑆1𝐼𝐶1
𝐼𝐶

[1 − 𝑆
𝑆1

− 𝐼𝐶
𝐼𝐶1

+ 𝑆𝐼𝐶
𝑆1𝐼𝐶1

].

(34)

Now, putting the Eqs. (31)–(34) in to Eq. (30), we get

𝑑𝐿1
𝑑𝑡

= 𝛽2𝑆1𝐼𝐶1[1 −
𝑆1
𝑆

+ 𝐼𝐶
𝐼𝐶1

(1 − 𝑆
𝑆1
)] + 𝛽1𝑆1𝐼𝐵[1 −

𝑆
𝑆1

+ 𝜃𝑏
𝛽1𝑆

(1 − 𝑆
𝑆1
)]

+ (𝜇 + 𝜖 + 𝑝)𝑆1𝐼𝐶 [2 −
𝑆1
𝑆

− 𝑆
𝑆1
] + 𝜓𝑆1𝑉1

𝑆
[1 − 𝑉

𝑉1
+ 𝑉 𝑆

𝑉1𝑆1
(1 − 𝑆𝑉1

𝑆1𝑉
)]

+ 𝛽3𝑉1𝐼𝐶1[1 −
𝑉1
𝑉

+ 𝐼𝐶
𝐼𝐶1

(1 − 𝑉
𝑉1
)] + 𝜖𝑆1𝑉1

𝑉
[1 − 𝑉

𝑉1
+ 𝑉 𝑆

𝑉1𝑆1
(1 − 𝑆𝑉1

𝑆1𝑉
)]

+ (𝜇 + 𝜓)𝑉1[2 −
𝑉1
𝑉

− 𝑉
𝑉1
] + (𝜇 + 𝑑2 + 𝑟2)[2 −

𝐼𝐶1
𝐼𝐶

− 𝐼𝐶
𝐼𝐶1

]

+ 𝑝𝑆1𝐼𝐶1
𝐼𝐶

[1 − 𝐼𝐶
𝐼𝐶1

+ 𝑆𝐼𝐶
𝑆1𝐼𝐶1

(1 − 𝐼𝐶𝑆1
𝐼𝐶1𝑆

)] + [𝑏𝜃 + 𝛽1𝑆 − 𝜇 − 𝑑1 − 𝑟1]𝐼𝐵

+
𝛽2𝑆1𝐼2𝐶1
𝐼𝐶

[1 − 𝐼𝐶
𝐼𝐶1

+
𝑆𝐼2𝐶
𝑆1𝐼2𝐶1

(1 − 𝐼𝐶1
𝐼𝐶

)] +
𝛽3𝑉1𝐼2𝐶1
𝐼𝐶

[1 − 𝐼𝐶
𝐼𝐶1

+
𝑉 𝐼2𝐶
𝑉1𝐼2𝐶1

(1 − 𝐼𝐶1
𝐼𝐶

)].

(35)
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T
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Obviously, in Eq. (35),
[

1 −
𝐼𝐶
𝐼𝐶1

+
𝑆𝐼2𝐶
𝑆1𝐼2𝐶1

(1 −
𝐼𝐶1
𝐼𝐶

)
]

≤ 0,

[

1 − 𝑆
𝑆1

+ 𝜃𝑏
𝛽1𝑆

(1 − 𝑆
𝑆1

)
]

≤ 0,

1 − 𝑉
𝑉1

+ 𝑉 𝑆
𝑉1𝑆1

(1 −
𝑆𝑉1
𝑆1𝑉

)
]

≤ 0,

[

1 −
𝑉1
𝑉

+
𝐼𝐶
𝐼𝐶1

(1 − 𝑉
𝑉1

)
]

≤ 0,

[

𝑏𝜃 + 𝛽1𝑆 − 𝜇 − 𝑑1 − 𝑟1

]

𝐼𝐵 ≤ 0.

Therefore, using the result of LaSalle Invariance principle, the HB-
VFE has a basin of attraction under 0𝐵 ≤ 1 < 0.

Theorem 6.3. The HCVFE, is global asymptotically stable when 0𝐶 ≤
1 < 0, otherwise is unstable.

Proof. To discuss that, we consider the following Lyapunov function

𝐿2 = ∫

𝑆

𝑆2
(1 −

𝑆2
𝑥
)𝑑𝑥 + ∫

𝑉

𝑉2
(1 −

𝑉2
𝑥
)𝑑𝑥 + ∫

𝐼𝐵

𝐼𝐵2
(1 −

𝐼𝐵2
𝑥

)𝑑𝑥 + 𝐼𝐶 . (36)

The derivative of 𝐿2(𝑡) corresponding to the model solutions is

𝑑𝐿2
𝑑𝑡

= (1 −
𝑆2
𝑆

)𝑑𝑆
𝑑𝑡

+ (1 −
𝑉2
𝑉

)𝑑𝑉
𝑑𝑡

+ (1 −
𝐼𝐵2
𝐼𝐵

)
𝑑𝐼𝐵
𝑑𝑡

+
𝑑𝐼𝐶
𝑑𝑡

. (37)

In following from direct simplify
(

1 − 𝑆2

𝑆

)

𝑑𝑆
𝑑𝑡

= (1 − 𝑆2

𝑆
)[𝑏(1 − 𝜃𝐼𝐵) − (𝜇 + 𝜖 + 𝑏 + 𝛽1𝐼𝐵 + 𝛽2𝐼𝐶 )𝑆 + 𝜓𝑉 ]

= (1 − 𝑆2

𝑆
)[−𝜃𝑏𝐼𝐵 − (𝜇 + 𝜖 + 𝑝 + 𝛽1𝐼𝐵 + 𝛽2𝐼𝐶 )𝑆 + 𝜓𝑉

+ 𝜃𝑏𝐼𝐵2 + (𝜇 + 𝜖 + 𝑝 + 𝛽1𝐼𝐵2)𝑆2 − 𝜓𝑉2]

= 𝛽1𝑆2𝐼𝐵2[1 −
𝑆2

𝑆
− 𝑆𝐼𝐵

𝑆2𝐼𝐵2
+ 𝐼𝐵

𝐼𝐵2
] + (𝜇 + 𝜖 + 𝑝)[1 − 𝑆2

𝑆
− 𝑆

𝑆2
+ 1]

+ 𝜓𝑉2𝑆2

𝑆
[1 − 𝑉

𝑉2
− 𝑆

𝑆2
+ 𝑉 𝑆

𝑉2𝑆2
] + 𝑏𝜃𝐼𝐵2[1 −

𝑆2

𝑆
− 𝐼𝐵

𝐼𝐵2
+ 𝑆2𝐵

𝑆𝐼𝐵2
]

+ 𝛽2𝐼𝐶𝑆2[1 −
𝑆
𝑆2
],

(38)
(

1 − 𝑉2
𝑉

)

𝑑𝑉
𝑑𝑡

= (1 − 𝑉2
𝑉
)[𝜖𝑆 − (𝜇 + 𝜓 + 𝛽3𝐼𝐶 )𝑉 ]

= (1 − 𝑉2
𝑉
)[𝜖𝑆 − (𝜇 + 𝜓 + 𝛽3𝐼𝐶 )𝑉 − 𝜖𝑆2 + (𝜇 + 𝜓)𝑉2]

= 𝜖𝑆2𝑉2
𝑉

[1 − 𝑆
𝑆2

− 𝑉
𝑉2

+ 𝑆𝑉
𝑆2𝑉2

] + (𝜇 + 𝜓)[1 − 𝑉2
𝑉

− 𝑉
𝑉2

+ 1]

= 𝛽3𝐼𝐶𝑉2[1 −
𝑉
𝑉2
],

(39)

(

1 − 𝐼𝐵2
𝐼𝐵

)

𝑑𝐼𝐵
𝑑𝑡

= (1 − 𝐼𝐵2
𝐼𝐵

)[(𝑏𝜃 + 𝛽1𝑆 − 𝜇 − 𝑑1 − 𝑟1)𝐼𝐵 + 𝜎𝑝𝑆]

= (1 − 𝐼𝐵2
𝐼𝐵

)[(𝑏𝜃 + 𝛽1𝑆 − 𝜇 − 𝑑1 − 𝑟1)𝐼𝐵 + 𝜎𝑝𝑆

− (𝑏𝜃 + 𝛽1𝑆2 − 𝜇 − 𝑑1 − 𝑟1)𝐼𝐵2 − 𝑝𝑆2]

=
𝛽1𝑆2𝐼

2
𝐵2

𝐼𝐵
[1 − 𝐼𝐵

𝐼𝐵2
+

𝑆𝐼2𝐵
𝑆2𝐼

2
𝐵2

− 𝑆
𝐼 𝐵
𝑆2𝐼𝐵2]

+ (𝜇 + 𝑑1 + 𝑟1)𝐼𝐵2[1 −
𝐼𝐵2
𝐼𝐵

− 𝐼𝐵
𝐼𝐵2

+ 1]

+ 𝑝𝑆2𝐼𝐵2
𝐼𝐵

[1 − 𝜎𝑆
𝑆2

− 𝐼𝐵
𝐼𝐵2

+ 𝜎𝑆𝐼𝐵
𝑆2𝐼𝐵2

] +
𝑏𝜃𝐼2𝐵2
𝐼𝐵

[1 − 𝐼𝐵
𝐼𝐵2

− 𝐼𝐵
𝐼𝐵2

+
𝐼2𝐵
𝐼2𝐵2

],

(40)

𝑑𝐼𝐶
𝑑𝑡

= [𝛽2𝑆 + 𝛽3𝑉 − 𝜇 − 𝑑2 − 𝑟2], (41)

Thus, by putting Eqs. (38)–(41) in to Eq. (37), we get
𝑑𝐿2
𝑑𝑡

= 𝛽1𝑆2𝐼𝐵2[1 −
𝑆2
𝑆

+ 𝐼𝐵
𝐼𝐵2

(1 − 𝑆
𝑆2
)] + (𝜇 + 𝜖 + 𝑝)𝑆2[2 −

𝑆2
𝑆

− 𝑆
𝑆2

]
𝜓𝑉2𝑆2 𝑆 𝑉 𝑆 𝑆2 𝑆2 𝑆2𝐵 𝑆
6

+
𝑆

[1 −
𝑆2

+
𝑉2𝑆2

(1 −
𝑆
)] + 𝑏𝜃𝐼𝐵2[1 − 𝑆

+
𝑆𝐼𝐵2

(1 −
𝑆2
)]
+ 𝛽2𝐼𝐶𝑆2[1 −
𝑆
𝑆2
] + 𝜖𝑆2𝑉2

𝑉
[1 − 𝑆

𝑆2
+ 𝑉 𝑆

𝑉2𝑆2
(1 − 𝑆2

𝑆
)] + 𝛽3𝐼𝐶𝑉2[1 −

𝑉
𝑉2
]

+ (𝜇 + 𝜓)𝑉2[2 −
𝑉2
𝑉

− 𝑉
𝑉2
] + (𝜇 + 𝑑1 + 𝑟1)𝐼𝐵2[2 −

𝐼𝐵2
𝐼𝐵

− 𝐼𝐵
𝐼𝐵2

]

+ 𝑝𝑆2𝐼𝐵2
𝐼𝐵

[1 − 𝐼𝐵
𝐼𝐵2

+ 𝜎𝑆𝐼𝐵
𝑆2𝐼𝐵2

(1 − 𝐼𝐵2
𝐼𝐵

)] + [𝛽2𝑆 + 𝛽3𝑉 − 𝜇 − 𝑑2 − 𝑟2]𝐼𝐶

+
𝛽1𝑆2𝐼2𝐵2
𝐼𝐵

[1 − 𝐼𝐵
𝐼𝐵2

+
𝑆𝐼2𝐵
𝑆2𝐼2𝐵2

(1 − 𝐼𝐵2
𝐼𝐵

)] +
𝑏𝜃𝐼2𝐵2
𝐼𝐵

[1 − 𝐼𝐵
𝐼𝐵2

+
𝐼2𝐵
𝐼2𝐵2

(1 − 𝐼𝐵2
𝐼𝐵

)].

(42)

Obviously, in Eq. (42),
[

1 − 𝑆
𝑆2

+ 𝑉 𝑆
𝑉2𝑆2

(1 −
𝑆2
𝑆

)
]

≤ 0,

1 −
𝐼𝐵
𝐼𝐵2

+
𝜎𝑆𝐼𝐵
𝑆2𝐼𝐵2

(1 −
𝐼𝐵2
𝐼𝐵

)
]

≤ 0,

1 − 𝑉
𝑉2

]

≤ 0,

[

𝛽2𝑆 + 𝛽3𝑉 − 𝜇 − 𝑑2 − 𝑟2

]

𝐼𝐶 ≤ 0.

herefore, using the result of LaSalle Invariance principle, the HCVFE
as a basin of attraction under 0𝐶 ≤ 1 < 0.

Theorem 6.4. The EE, is global asymptotically stable when 0 > 1,
otherwise is unstable.

Proof. To discuss that, we consider the following Lyapunov function

𝐿3 = ∫

𝑆

𝑆3
(1−

𝑆3
𝑥
)𝑑𝑥+∫

𝑉

𝑉3
(1−

𝑉3
𝑥
)𝑑𝑥+∫

𝐼𝐵

𝐼𝐵3
(1−

𝐼𝐵3
𝑥

)𝑑𝑥+∫

𝐼𝐶

𝐼𝐶3
(1−

𝐼𝐶3
𝑥

)𝑑𝑥.

(43)

The derivative of 𝐿3(𝑡) corresponding to the model solutions is
𝑑𝐿3
𝑑𝑡

= (1 −
𝑆3
𝑆

)𝑑𝑆
𝑑𝑡

+ (1 −
𝑉3
𝑉

)𝑑𝑉
𝑑𝑡

+ (1 −
𝐼𝐵3
𝐼𝐵

)
𝑑𝐼𝐵
𝑑𝑡

+ (1 −
𝐼𝐶3
𝐼𝐶

)
𝑑𝐼𝐶
𝑑𝑡

. (44)

In following from direct calculation
(

1 − 𝑆3

𝑆

)

𝑑𝑆
𝑑𝑡

= 𝛽1𝑆3𝐼𝐵3[1 −
𝑆3

𝑆
− 𝑆𝐼𝐵

𝑆3𝐼𝐵3
+ 𝐼𝐵

𝐼𝐵3
] + 𝛽2𝑆3𝐼𝐶3[1 −

𝑆3

𝑆
− 𝑆𝐼𝐶

𝑆3𝐼𝐶3
+ 𝐼𝐶

𝐼𝐶3
]

+ (𝜇 + 𝜖 + 𝑝)𝑆3[1 −
𝑆3

𝑆
− 𝑆

𝑆3
+ 1] + 𝜓𝑆3𝑉3

𝑆
[1 − 𝑉

𝑉3
− 𝑆

𝑆3
+ 𝑆𝑉

𝑆3𝑉3
]

+ 𝑏𝜃𝑆3𝐼𝐵
𝑆

[1 − 𝐼𝐵3
𝐼𝐵

− 𝑆
𝑆3

+ 𝑆𝐼𝐵3
𝑆3𝐼𝐵

],

(45)

(

1 − 𝑉3
𝑉

)

𝑑𝑉
𝑑𝑡

= 𝛽3𝑉3𝐼𝐶3[1 −
𝑉3
𝑉

− 𝑉 𝐼𝐶
𝑉3𝐼𝐶3

+ 𝐼𝐶
𝐼𝐶3

] + (𝜇 + 𝜓)𝑉3[1 −
𝑉3
𝑉

− 𝑉
𝑉3

+ 1]

+ 𝜖𝑆3𝑉3
𝑉

[1 − 𝑆
𝑆3

− 𝑉
𝑉3

+ 𝑆𝑉
𝑆3𝑉3

],

(46)

(

1 − 𝐼𝐵3
𝐼𝐵

)

𝑑𝐼𝐵
𝑑𝑡

=
𝛽1𝑆3𝐼

2
𝐵3

𝐼𝐵
[1 − 𝐼𝐵

𝐼𝐵3
− 𝑆𝐼𝐵

𝑆3𝐼𝐵3
+

𝑆𝐼2𝐵
𝑆3𝐼

2
𝐵3

]

+ (𝜇 + 𝑑1 + 𝑟1)𝐼𝐵3[1 −
𝐼𝐵3
𝐼𝐵

− 𝐼𝐵
𝐼𝐵3

+ 1]

+
𝑏𝜃𝐼2𝐵3
𝐼𝐵

[1 − 𝐼𝐵
𝐼𝐵3

− 𝐼𝐵
𝐼𝐵3

+
𝐼2𝐵
𝐼2𝐵3

] + 𝑝𝜎𝑆3𝐼𝐵3
𝐼𝐵

[1 − 𝑆
𝑆3

− 𝐼𝐵
𝐼𝐵3

+ 𝑆𝐼𝐵
𝑆3𝐼𝐵3

],

(47)
(

1 − 𝐼𝐶3
𝐼𝐶

)

𝑑𝐼𝐶
𝑑𝑡 =

𝛽2𝑆3𝐼2𝐶3
𝐼𝐶

[1 − 𝐼𝐶
𝐼𝐶3

− 𝑆𝐼𝐶
𝑆3𝐼𝐶3

+
𝑆𝐼2𝐶
𝑆3𝐼2𝐶3

]

+
𝛽3𝑉3𝐼2𝐶3
𝐼𝐶

[1 − 𝐼𝐶
𝐼𝐶3

− 𝑉 𝐼𝐶
𝑉3𝐼𝐶3

+
𝑉 𝐼2𝐶
𝑉3𝐼2𝐶3

]

+ (𝜇 + 𝑑2 + 𝑟2)𝐼𝐶3[1 −
𝐼𝐶3
𝐼𝐶

− 𝐼𝐶
𝐼𝐶3

+ 1]

+ (1−𝜎)𝑝𝑆3𝐼𝐶3
𝐼𝐶

[1 − 𝑆
𝑆3

− 𝐼𝐶
𝐼𝐶3

+ 𝑆𝐼𝐶
𝑆3𝐼𝐶3

].

(48)

Now, by putting Eqs. (45)–(48) in to Eq. (44), we get
𝑑𝐿3

𝑑𝑡
= 𝛽1𝑆3𝐼𝐵3𝐼𝐶𝐼𝐵[1 −

𝑆3

𝑆
+ 𝐼𝐵

𝐼𝐵3
(1 − 𝑆

𝑆3
)] + 𝛽2𝑆3𝐼𝐶3[1 −

𝑆3

𝑆
+ 𝐼𝐶

𝐼𝐶3
(1 − 𝑆

𝑆3
)]

+ 𝛽3𝑉3𝐼𝐶3[1 −
𝑉3
𝑉

+ 𝐼𝐶
𝐼𝐶3

(1 − 𝑉
𝑉3
)] + 𝜓𝑆3𝑉3

𝑆
[1 − 𝑉

𝑉3
+ 𝑆𝑉

𝑆3𝑉3
(1 − 𝑉3

𝑉
)]

𝜖𝑆3𝑉3 𝑉 𝑆𝑉 𝑉3 𝑆3 𝑆
+
𝑉

[1 −
𝑉3

+
𝑆3𝑉3

(1 −
𝑉
)] + (𝜇 + 𝜖 + 𝑝)𝑆3[2 − 𝑆

−
𝑆3
]
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+ (𝜇 + 𝜓)𝑉3[2 −
𝑉3
𝑉

− 𝑉
𝑉3
] + (𝜇 + 𝑑1 + 𝑟1)𝐼𝐵3[2 −

𝐼𝐵3
𝐼𝐵

− 𝐼𝐵
𝐼𝐵3

]

+ (𝜇 + 𝑑2 + 𝑟2)𝐼𝐶3[2 −
𝐼𝐶3
𝐼𝐵

− 𝐼𝐵
𝐼𝐵3

] + 𝑏𝜃𝑆3𝐼𝐵
𝑆

[1 − 𝐼𝐵3
𝐼𝐵

+ 𝑆𝐼𝐵3
𝑆3𝐼𝐵

(1 − 𝐼𝐵
𝐼𝐵3

)]

+ 𝑏𝜃𝐼2𝐵3
𝐼𝐵

[1 − 𝐼𝐵
𝐼𝐵3

+ 𝐼2𝐵
𝐼2𝐵3

(1 − 𝐼𝐵
𝐼𝐵3

)] + 𝜎𝑝𝑆3𝐼𝐵3
𝐼𝐵

[1 − 𝐼𝐵
𝐼𝐵3

+ 𝑆𝐼𝐵
𝑆3𝐼𝐵3

(1 − 𝐼𝐵3
𝐼𝐵

)]

+ (1−𝜎)𝑝𝑆3𝐼𝐶3
𝐼𝐶

[1 − 𝐼𝐶
𝐼𝐶3

+ 𝑆𝐼𝐶
𝑆3𝐼𝐶3

(1 − 𝐼𝐶3
𝐼𝐶

)] + 𝛽1𝑆3𝐼2𝐵3
𝐼𝐵

[1 − 𝐼𝐵
𝐼𝐵3

+ 𝑆𝐼2𝐵
𝑆3𝐼2𝐵3

(1 − 𝐼𝐵3
𝐼𝐵

)]

+ 𝛽2𝑆3𝐼2𝐶3
𝐼𝐶

[1 − 𝐼𝐶
𝐼𝐶3

+ 𝑆𝐼2𝐶
𝑆3𝐼2𝐶3

(1 − 𝐼𝐶3
𝐼𝐶

)] + 𝛽3𝑉3𝐼2𝐶3
𝐼𝐶

[1 − 𝐼𝐶
𝐼𝐶3

+ 𝑉 𝐼2𝐶
𝑉3𝐼2𝐶3

(1 − 𝐼𝐶3
𝐼𝐶

)].

(49)

Now, in Eq. (49) if the following
[

1 −
𝑆3
𝑆

+
𝐼𝐵
𝐼𝐵3

(1 − 𝑆
𝑆3

)
]

≤ 0

[

1 −
𝐼𝐵
𝐼𝐵3

+
𝑆𝐼2𝐵
𝑆3𝐼2𝐵3

(1 −
𝐼𝐵3
𝐼𝐵

)
]

≤ 0

[

1 −
𝐼𝐶
𝐼𝐶3

+
𝑉 𝐼2𝐶
𝑉3𝐼2𝐶3

(1 −
𝐼𝐶3
𝐼𝐶

)
]

≤ 0

1 − 𝑉
𝑉3

+ 𝑆𝑉
𝑆3𝑉3

(1 −
𝑉3
𝑉

)
]

≤ 0

Therefore, using the result of LaSalle Invariance principle, the HB-
FE has a basin of attraction under 0 > 1, otherwise is unstable.

7. Fractional-order viral hepatitis model

In this part, we apply a fractional-order derivative effect on the
viral hepatitis disease. We study the dynamic behaviour by using
Caputo–Fabrizio derivative with fractional-order. We therefore replace
the derivatives in the model (5) under consideration with a fractional
derivative to maintain the dimension of both sides of the equations of
the proposed model taking the 𝜅 power of each variable.

7.1. Preliminaries

Definition 7.1.1 (See Ref. 26). The Caputo fractional derivative for
order 𝑥 > 0 is defined in below

𝐷𝑥
𝑡 𝑓 (𝑡) =

1
𝛤 (𝑛 − 𝑥) ∫

𝑡

𝑎
(𝑡 − 𝜉)𝑛−𝑥−1𝑓 (𝑛)(𝜉)𝑑𝜉,

where 𝑛 − 1 < 𝑥 ≤ 𝑛, 𝑛 ∈ 𝑁, 𝑓 ∈ 𝐶𝑛−1[0, 𝑡].

efinition 7.1.2 (See Ref. 26). The Atangana–Baleanu fractional deriva-
ive for a given function for order 𝑥 in Caputo sense are defined in

below

𝐷𝑥
𝑡 𝑓 (𝑡) =

𝐵(𝑥)
1 − 𝑥 ∫

𝑡

𝑎

𝑑𝑓 (𝜉)
𝑑𝜉

𝐸𝑥[−
𝑥

1 − 𝑥
(𝑡 − 𝜉)𝑥]𝑑𝜉,

where 𝐵(𝑥) = (1 − 𝑥) + 𝑥
𝛤 (𝑥) is a normalisation function and 𝐸𝛼(.) is the

Mittag-Leffler function.

Definition 7.1.3 (See Ref. 26). Atangana–Baleanu fractional integral
rder 𝑥 is defined by

𝑥
𝑡 (𝑓 (𝑡)) =

1 − 𝑥
𝐵(𝑥)

𝑓 (𝑡) + 𝑥
𝐵(𝑥)𝛤 (𝑥) ∫

𝑡

𝑎
𝑓 (𝜉)(𝑡 − 𝜉)𝑥−1𝑑𝜉,

if 𝑓 (𝑡) is a constant, integral will be resulted with zero.

Definition 7.1.4 (See Ref. 26). the Laplace transforms for the Atangana–
Baleanu fractional operator of order 𝑥, where 0 < 𝑥 ≤ 1 is given
by

𝐿𝐷𝑥𝑓 (𝑡)(𝑠) =
𝐵(𝑥)
1 − 𝑥

𝑆𝑥𝐿𝑓 (𝑡)(𝑠) − 𝑠𝑥−1𝑓 (𝑎)
𝑠𝑥 + 𝑥

1−𝑥

.

efinition 7.1.5 (See Ref. 26). The function 𝑓 is satisfied the Hölder
ontinuous function if and only if there 𝐶, 𝑣 ∈ ℜ+ be constants such
hat ‖𝑓 (𝑥) − 𝑓 (𝑦)‖ ≤ 𝐶‖𝑥 − 𝑦‖𝑣.
7

.2. Fractional-order model

We utilised the Caputo–Fabrizio (CF) fractional derivatives instead
f classical derivatives. In this matter, the model (5) in previous section
ecame the following model of fractional-order type:

𝐷𝜅𝑆(𝑡) = 𝑏(1 − 𝜃𝐼𝐵) − (𝜇 + 𝜖 + 𝑝 + 𝛽1𝐼𝐵 + 𝛽2𝐼𝐶 )𝑆 + 𝜓𝑉 ,
𝐷𝜅𝑉 (𝑡) = 𝜖𝑆 − (𝜇 + 𝜓 + 𝛽3𝐼𝐶 )𝑉 ,
𝐷𝜅𝐼𝐵(𝑡) = (𝑏𝜃 + 𝛽1𝑆 − 𝜇 − 𝑑1 − 𝑟1)𝐼𝐵 + 𝜎𝑝𝑆,
𝐷𝜅𝐼𝐶 (𝑡) = (𝛽2𝑆 + 𝛽3𝑉 − 𝜇 − 𝑑2 − 𝑟2)𝐼𝐶 + (1 − 𝜎)𝑝𝑆.

(50)

Here, 0 < 𝜅 < 1 and 𝐷𝜅 represented to the fractional derivative
n the (CF) operator. While, the all parameters still the same meaning
uch as model (5) as well as the all equilibrium points are the similar
n the both models (5) and (50).

. Numerical simulations

In this section of the present article is devoted to the numerical
esults of the dynamics of viral hepatitis disease. In this work, four
ategories of the species are considered; the susceptible population,
accinated population, viral B hepatitis infected population and viral
hepatitis infected population. These four species are interconnected
ith each other. Moreover, the impact of embedded parameters is

hown on the dynamics of all species. Here, we chose the parameters
alues range according to several references also the current research
akes into account the Caputo sense fractional differential operator
s state as in follows 𝑏 = 100; 𝜃 = 1 × 10−5; 𝛽1 = 1 × 10−6; 𝛽2 =
× 10−6; 𝛽3 = 1 × 10−6; 𝜖 = 0.5;𝜇 = 0.01; 𝑝 = 0.1;𝜓 = 0.2; 𝑑1 =
×10−5; 𝑑2 = 1×10−4; 𝑟1 = 1×10−6; 𝑟2 = 0.002; 𝜎 = 0.002, with initial data
150,750,25,15) (blue curve) and (500,1500,100,4000) (red curve) in
ig. 3. Then, we get 0 = 1.4 > 1, and hence the solution approaches
3 = (700, 1500, 16, 6400).

Next, we consider that 𝜎 = 1 then 0𝐶 = 0.8 < 1 < 0 = 1.22, then
the solution approaches 𝑒2 = (650, 1550, 7700, 0). This result is shown in
Fig. 4.

For 𝜎 = 0 we get 0𝐵 = 0.3 < 1 < 0 = 1.22, and then the solution
tends to 𝑒1 = (650, 1500, 0, 6400), which agrees with the global stability
f 𝑒1 in this case. This result is shown in Fig. 5.

Now, for the same data used with take values of parameters 𝑝, 𝛽1
nd 𝛽3, so that 𝑝 = 0, 𝛽1 = 1 × 10−7 and 𝛽3 = 1 × 10−7 respectively, the
rajectories of model (5) approaches to the 𝑒0 = (2900, 7000, 0, 0) and
0 = 0.431 < 1, are drawn in Fig. 6. Also, the effect of vaccine and

xternal sources of disease are drawn in Figs. 7–9 respectively. While,
he discussion and influence of a fractional-order model we show that
y Figs. 10–13.

Finally, the results in Fig. 14 show the relation between the repro-
uction number 0 and some parameters such as 𝛽1, 𝛽2, 𝛽3, 𝜖, 𝜓, 𝜇, 𝑑1, 𝑑2

and 𝑟2. Hence, this relationship has an impact on disease behaviour.

9. Conclusion

In this study, we looked at an epidemiological mathematical model
of diseases caused by hepatitis virus types B and C. It is believed
that our model considers four groups: the vulnerable population, the
immunised population, the population infected with viral B and C
hepatitis respectively. These four species are related to one another by
some assumption was wrote through four ordinary differential equa-
tions. It was our goal to examining how co-transmission as (direct
contact, vertically, external sources of disease), vaccination and the
different fractional orders affect the dynamics of such a system. The
boundedness, uniqueness and positivity of the solution were investi-
gated. It was established that various equilibrium points exist. The
topics of local and global stability were covered according to the
basic reproduction number. Finally, model (5) was solved, the the-

oretical conclusion was verified, and the control set of parameters
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was specified using numerical simulation. The following results were
obtained.

Model (5) asymptotically approaches EE point from several sets of
initial points if 0 > 1. Due to 𝜎 = 1, we get the 0𝐶 < 1 and
he dynamical of model (5) converges to a HCVFE point. While, the
alue of 𝜎 = 0, we have, the value of 0𝐵 < 1 and the dynamical
f model (5) converges to a HBVFE point. When, declining contact
ates, the EE gradually converges to a UVHE point as the (𝛽1, 𝛽3, 𝑝) rates
eclining, demonstrating the influence of contact rate on the dynamics
f the system. For the vaccination rate of system (5), it was noted that
ith an increase in vaccine rate, the system dynamics still converge

o EE, but the number of infected are decreasing. However, lowering
he vaccination rate or increasing the vaccination failure rate then the
umber of infected are increase.

The numerical results confirm that fractional-order differential
quations describe biological systems better and have plentiful dynam-
cs when compared with standard integer-order models. Meanwhile,
omparing the different fractional orders, we observe that the viral
epatitis infected solutions converge faster to their equilibrium points
s kappa is increased to 1.
8

Finally, we presented the global sensitivity analysis of the model in
rder to point out the dominant and the most influential parameters
f the model. From these results, it is found that the most crucial
arameters are the contact rates (𝛽1, 𝛽2, 𝛽3, 𝑝) and the vaccination rate
𝜖, 𝜓).
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Fig. 5. Graph stability of HBVFE point.

Fig. 6. Graph stability of UVHE point.
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Fig. 7. Effect of vaccination rate on population.

Fig. 8. Effect of failure of vaccine on population.
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Fig. 9. Effect of external source of infection on population.

Fig. 10. Effect of fractional-order on EE point with different values of 𝜅.
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Fig. 11. Effect of fractional-order on HCVFE point with different values of 𝜅.

Fig. 12. Effect of fractional-order on HBVFE point with different values of 𝜅.
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Fig. 13. Effect of fractional-order on UVHE point with different values of 𝜅.

Fig. 14. Effect of some parameters on the reproduction number value.
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