Preferred Language
Articles
/
6hZRrooBVTCNdQwCxqIt
Delay in eco-epidemiological prey-predator model with predation fear and hunting cooperation
...Show More Authors

It is recognized that organisms live and interact in groups, exposing them to various elements like disease, fear, hunting cooperation, and others. As a result, in this paper, we adopted the construction of a mathematical model that describes the interaction of the prey with the predator when there is an infectious disease, as well as the predator community's characteristic of cooperation in hunting, which generates great fear in the prey community. Furthermore, the presence of an incubation period for the disease provides a delay in disease transmission from diseased predators to healthy predators. This research aims to examine the proposed mathematical model's solution behavior to better understand these elements' impact on an eco-epidemic system. For all time, all solutions were proven to exist, be positive, and be uniformly bounded. The existence conditions of possible equilibrium points were determined. The stability analysis was performed for all conceivable equilibria in the presence and absence of delay. When the feedback time delays reach a critical point, the existence of Hopf bifurcation is examined. The normal form theory and the Centre manifold theorem are commonly used to investigate the dynamic properties of bifurcating cyclic solutions arising from Hopf bifurcations. Some numerical simulations were presented to validate the theoretical conclusions and understand the impact of changing the parameter values.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Feb 01 2021
Journal Name
Journal Of Physics: Conference Series
The Fear Effect on a Food Chain Prey-Predator Model Incorporating a Prey Refuge and Harvesting
...Show More Authors
Abstract<p>In this paper, we investigate the impact of fear on a food chain mathematical model with prey refuge and harvesting. The prey species reproduces by to the law of logistic growth. The model is adapted from version of the Holling type-II prey-first predator and Lotka-Volterra for first predator-second predator model. The conditions, have been examined that assurance the existence of equilibrium points. Uniqueness and boundedness of the solution of the system have been achieve. The local and global dynamical behaviors are discussed and analyzed. In the end, numerical simulations are confirmed the theoretical results that obtained and to display the effectiveness of varying each parameter</p> ... Show More
View Publication
Scopus (15)
Crossref (7)
Scopus Crossref
Publication Date
Wed Jun 28 2023
Journal Name
Mathematics
The Impact of Fear on a Harvested Prey–Predator System with Disease in a Prey
...Show More Authors

A mathematical eco-epidemiological model consisting of harvested prey–predator system involving fear and disease in the prey population is formulated and studied. The prey population is supposed to be separated into two groups: susceptible and infected. The susceptible prey grows logistically, whereas the infected prey cannot reproduce and instead competes for the environment’s carrying capacity. Furthermore, the disease is transferred through contact from infected to susceptible individuals, and there is no inherited transmission. The existence, positivity, and boundedness of the model’s solution are discussed. The local stability analysis is carried out. The persistence requirements are established. The global behavior of th

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Oct 15 2022
Journal Name
Communications In Mathematical Biology And Neuroscience
Modeling and analysis of a prey-predator system incorporating fear, predator-dependent refuge, and cannibalism
...Show More Authors

Using a mathematical model to simulate the interaction between prey and predator was suggested and researched. It was believed that the model would entail predator cannibalism and constant refuge in the predator population, while the prey population would experience predation fear and need for a predator-dependent refuge. This study aimed to examine the proposed model's long-term behavior and explore the effects of the model's key parameters. The model's solution was demonstrated to be limited and positive. All potential equilibrium points' existence and stability were tested. When possible, the appropriate Lyapunov function was utilized to demonstrate the equilibrium points' overall stability. The system's persistence requirements were spe

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Mon Sep 12 2022
Journal Name
Communications In Mathematical Biology And Neuroscience
The influence of fear on the dynamic of an eco-epidemiological system with predator subject to the weak Allee effect and harvesting
...Show More Authors

In this paper, an eco-epidemiological prey-predator system when the predator is subjected to the weak Allee effect, and harvesting was proposed and studied. The set of ordinary differential equations that simulate the system’s dynamic is constructed. The impact of fear and Allee’s effect on the system's dynamic behavior is one of our main objectives. The properties of the solution of the system were studied. All possible equilibrium points were determined, and their local, as well as global stabilities, were investigated. The possibility of the occurrence of local bifurcation was studied. Numerical simulation was used to further evaluate the global dynamics and understood the effects of varying parameters on the asymptotic behavior of t

... Show More
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Wed Jan 08 2020
Journal Name
International Journal Of Advanced Science And Technology
The local stability of an eco-epidemiological model involving a harvesting on predator population
...Show More Authors

In this paper a prey - predator model with harvesting on predator species with infectious disease in prey population only has been proposed and analyzed. Further, in this model, Holling type-IV functional response for the predation of susceptible prey and Lotka-Volterra functional response for the predation of infected prey as well as linear incidence rate for describing the transition of disease are used. Our aim is to study the effect of harvesting and disease on the dynamics of this model.

View Publication
Scopus (1)
Scopus
Publication Date
Wed Apr 20 2011
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Chaos in a harvested prey-predator model with infectious disease in the prey
...Show More Authors

A harvested prey-predator model with infectious disease in preyis investigated. It is assumed that the predator feeds on the infected prey only according to Holling type-II functional response. The existence, uniqueness and boundedness of the solution of the model are investigated. The local stability analysis of the harvested prey-predator model is carried out. The necessary and sufficient conditions for the persistence of the model are also obtained. Finally, the global dynamics of this model is investigated analytically as well as numerically. It is observed that, the model have different types of dynamical behaviors including chaos.

View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Proceedings Of The 2020 2nd International Conference On Sustainable Manufacturing, Materials And Technologies
The food web prey-predator model with toxin
...Show More Authors

View Publication
Crossref (5)
Crossref
Publication Date
Sat Feb 05 2022
Journal Name
Applied Nanoscience
RETRACTED ARTICLE: The impact of fear on a stage structure prey–predator system with anti-predator behavior
...Show More Authors

A prey-predator interaction model has been suggested in which the population of a predator consists of a two-stage structure. Modified Holling's disk equation is used to describe the consumption of the prey so that it involves the additional source of food for the predator. The fear function is imposed on prey. It is supposed that the prey exhibits anti-predator behavior and may kill the adult predator due to their struggle against predation. The proposed model is investigated for existence, uniqueness, and boundedness. After determining all feasible equilibrium points, the local stability analyses are performed. In addition, global stability analyses for this model using the Lyapunov method are investigated. The chance of occurrence of loc

... Show More
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Apr 04 2022
Journal Name
Communications In Mathematical Biology And Neuroscience
Stability and bifurcation of a prey-predator system incorporating fear and refuge
...Show More Authors

It is proposed and studied a prey-predator system with a Holling type II functional response that merges predation fear with a predator-dependent prey's refuge. Understanding the impact of fear and refuge on the system's dynamic behavior is one of the objectives. All conceivable steady-states are investigated for their stability. The persistence condition of the system has been established. Local bifurcation analysis is performed in the Sotomayor sense. Extensive numerical simulation with varied parameters was used to explore the system's global dynamics. A limit cycle and a point attractor are the two types of attractors in the system. It's also interesting to note that the system exhibits bi-stability between these 2 types of attractors.

... Show More
View Publication Preview PDF
Scopus (11)
Scopus Clarivate Crossref
Publication Date
Thu Nov 03 2022
Journal Name
Frontiers In Applied Mathematics And Statistics
Prey fear of a specialist predator in a tri-trophic food web can eliminate the superpredator
...Show More Authors

We propose an intraguild predation ecological system consisting of a tri-trophic food web with a fear response for the basal prey and a Lotka–Volterra functional response for predation by both a specialist predator (intraguild prey) and a generalist predator (intraguild predator), which we call the superpredator. We prove the positivity, existence, uniqueness, and boundedness of solutions, determine all equilibrium points, prove global stability, determine local bifurcations, and illustrate our results with numerical simulations. An unexpected outcome of the prey's fear of its specialist predator is the potential eradication of the superpredator.

View Publication
Scopus (3)
Scopus Clarivate Crossref