Let A be a unital algebra, a Banach algebra module M is strongly fully stable Banach A-module relative to ideal K of A, if for every submodule N of M and for each multiplier θ : N → M such that θ(N) ⊆ N ∩ KM. In this paper, we adopt the concept of strongly fully stable Banach Algebra modules relative to an ideal which generalizes that of fully stable Banach Algebra modules and we study the properties and characterizations of strongly fully stable Banach A-module relative to ideal K of A.
A systematic approach is presented to achieve the stable grasping of objects through a two-finger robotic hand, in which each finger cavity was filled with granular media. The compaction of the latter, controlled by vacuum pressure, was used to adjust the structural and contact stiffness of the finger. The grasping stability was studied under the concurrent effect of an external torque and applied vacuum pressure. Stable grasping was defined as the no slippage condition between the grasped object and the two fingers. Three control schemes were adopted and applied experimentally to ensure the effectiveness of the grasping process. The results showed that stable and unstable grasping regions exist for each combination of applied torqu
... Show MoreHomomorphic encryption became popular and powerful cryptographic primitive for various cloud computing applications. In the recent decades several developments has been made. Few schemes based on coding theory have been proposed but none of them support unlimited operations with security. We propose a modified Reed-Muller Code based symmetric key fully homomorphic encryption to improve its security by using message expansion technique. Message expansion with prepended random fixed length string provides one-to-many mapping between message and codeword, thus one-to many mapping between plaintext and ciphertext. The proposed scheme supports both (MOD 2) additive and multiplication operations unlimitedly. We make an effort to prove
... Show MoreLet R be an associative ring. In this paper we present the definition of (s,t)- Strongly derivation pair and Jordan (s,t)- strongly derivation pair on a ring R, and study the relation between them. Also, we study prime rings, semiprime rings, and rings that have commutator left nonzero divisior with (s,t)- strongly derivation pair, to obtain a (s,t)- derivation. Where s,t: R®R are two mappings of R.
Let be a Banach space, be a nonempty closed convex subset of , and be self
nonexpansive map. The sequence generated by the iterative method
, where be a contractive mapping
and is a sequence in We generalize the mapping to non-sel -Strongly
Pseudocontractive .
Background: Giant middle cerebral artery (MCA) aneurysms are surgically challenging lesions. Because of the complexity and variability of these aneurysms, a customized surgical technique is often needed for each case. In this article, we present a modified clip reconstruction technique of a ruptured complex giant partially thrombosed middle cerebral artery aneurysm.
Case description: The aneurysm was exposed using the pterional approach. Following proximal control, the aneurysm sac was decompressed. Then, we applied permanent clips to reconstruct the aneurysm neck. The configuration of the aneurysm mandated a tailored clipping pattern to account for resi
... Show MoreIn the present paper, the concepts of a quasi-metric space, quasi-Banach space
have been introduced. We prove some facts which are defined on these spaces and
define some polynomials on quasi-Banach spaces and studied their dynamics, such
as, quasi cyclic and quasi hypercyclic. We show the existence of quasi chaotic in the
sense of Devaney (quasi D-chaotic) polynomials on quasi Banach space of qsummable
sequences lq , 0<q<1 such polynomials P is defined by P((xi)i)=(p(xi+m))i
where p:CC, p(0) = 0. In general we also prove that P is quasi chaotic in the sense
of Auslander and Yorke (quasi AY-chaotic) if and only if 0 belong to the Julia set of
p, mN. And then we prove that if the above polynomial P o
Let Y be a"uniformly convex n-Banach space, M be a nonempty closed convex subset of Y, and S:M→M be adnonexpansive mapping. The purpose of this paper is to study some properties of uniform convex set that help us to develop iteration techniques for1approximationjof"fixed point of nonlinear mapping by using the Mann iteration processes in n-Banachlspace.
In this paper the centralizing and commuting concerning skew left -derivations and skew left -derivations associated with antiautomorphism on prime and semiprime rings were studied and the commutativity of Lie ideal under certain conditions were proved.
The concept of semi-essential semimodule has been studied by many researchers.
In this paper, we will develop these results by setting appropriate conditions, and defining new properties, relating to our concept, for example (fully prime semimodule, fully essential semimodule and semi-complement subsemimodule) such that: if for each subsemimodule of -semimodule is prime, then is fully prime. If every semi-essential subsemimodule of -semimodule is essential then is fully essential. Finally, a prime subsemimodule of is called semi-relative intersection complement (briefly, semi-complement) of subsemimodule in , if , and whenever with is a prime subsemimodule in , , then . Furthermore, some res
... Show More