Let A be a unital algebra, a Banach algebra module M is strongly fully stable Banach A-module relative to ideal K of A, if for every submodule N of M and for each multiplier θ : N → M such that θ(N) ⊆ N ∩ KM. In this paper, we adopt the concept of strongly fully stable Banach Algebra modules relative to an ideal which generalizes that of fully stable Banach Algebra modules and we study the properties and characterizations of strongly fully stable Banach A-module relative to ideal K of A.
Throughout this paper we introduce the concept of quasi closed submodules which is weaker than the concept of closed submodules. By using this concept we define the class of fully extending modules, where an R-module M is called fully extending if every quasi closed submodule of M is a direct summand.This class of modules is stronger than the class of extending modules. Many results about this concept are given, also many relationships with other related concepts are introduced.
An R-module M is called rationally extending if each submodule of M is rational in a direct summand of M. In this paper we study this class of modules which is contained in the class of extending modules, Also we consider the class of strongly quasi-monoform modules, an R-module M is called strongly quasi-monoform if every nonzero proper submodule of M is quasi-invertible relative to some direct summand of M. Conditions are investigated to identify between these classes. Several properties are considered for such modules
In this work, we apply the notion of a filter of a KU-Algebra and investigate several properties. The paper defined some filters such as strong filter, n-fold filter and P-filter and discussed a few theorems and examples.
Let be a ring. Given two positive integers and , an module is said to be -presented, if there is an exact sequence of -modules with is -generated. A submodule of a right -module is said to be -pure in , if for every -Presented left -module the canonical map is a monomorphism. An -module has the -pure intersection property if the intersection of any two -pure submodules is again -pure. In this paper we give some characterizations, theorems and properties of modules with the -pure intersection property.
Let be a ring. Given two positive integers and , an module is said to be -presented, if there is an exact sequence of -modules with is -generated. A submodule of a right -module is said to be -pure in , if for every -Presented left -module the canonical map is a monomorphism. An -module has the -pure intersection property if the intersection of any two -pure submodules is again -pure. In this paper we give some characterizations, theorems and properties of modules with the -pure intersection property.
The concepts of higher Bi- homomorphism and Jordan higher Bi- homomorphism have been introduced and studied the relation between Jordan and ordinary higher Bi- homomorphism also the concepts of Co- higher Bi- homomorphism and Co- Jordan higher Bi- homomorphism introduced and the relation between them in Banach algebra have also been studied.
In thisˑ paperˑ, we apply the notion ofˑ intuitionisticˑ fuzzyˑ n-fold KU-ideal of KU-algebra. Some types of ideals such as intuitionistic fuzzy KU-ideal, intuitionisticˑ fuzzy closed idealˑ and intuitionistic fuzzy n-fold KU-ideal are studied. Also, the relations between intuitionistic fuzzy n-fold KU-ideal and intuitionistic fuzzy KU-ideal are discussed. Furthermore, aˑ fewˑ results of intuitionisticˑ fuzzyˑ n-ˑfold KU-ideals of a KU-algebra underˑ homomorphismˑ are discussed.
The duo module plays an important role in the module theory. Many researchers generalized this concept such as Ozcan AC, Hadi IMA and Ahmed MA. It is known that in a duo module, every submodule is fully invariant. This paper used the class of St-closed submodules to work out a module with the feature that all St-closed submodules are fully invariant. Such a module is called an Stc-duo module. This class of modules contains the duo module properly as well as the CL-duo module which was introduced by Ahmed MA. The behaviour of this new kind of module was considered and studied in detail,for instance, the hereditary property of the St-duo module was investigated, as the result; under certain conditions, every St-cl
... Show MoreIn this paper we present the theoretical foundation of forward error analysis of numerical algorithms under;• Approximations in "built-in" functions.• Rounding errors in arithmetic floating-point operations.• Perturbations of data.The error analysis is based on linearization method. The fundamental tools of the forward error analysis are system of linear absolute and relative a prior and a posteriori error equations and associated condition numbers constituting optimal of possible cumulative round – off errors. The condition numbers enable simple general, quantitative bounds definitions of numerical stability. The theoretical results have been applied a Gaussian elimination, and have proved to be very effective means of both a prior
... Show More