The primary aim of this paper, is to introduce the rough probability from topological view. We used the Gm-topological spaces which result from the digraph on the stochastic approximation spaces to upper and lower distribution functions, the upper and lower mathematical expectations, the upper and lower variances, the upper and lower standard deviation and the upper and lower r th moment. Different levels for those concepts are introduced, also we introduced some results based upon those concepts.
In this paper we generalize some of the results due to Bell and Mason on a near-ring N admitting a derivation D , and we will show that the body of evidence on prime near-rings with derivations have the behavior of the ring. Our purpose in this work is to explore further this ring like behavior. Also, we show that under appropriate additional hypothesis a near-ring must be a commutative ring.
This paper presents a grey model GM(1,1) of the first rank and a variable one and is the basis of the grey system theory , This research dealt properties of grey model and a set of methods to estimate parameters of the grey model GM(1,1) is the least square Method (LS) , weighted least square method (WLS), total least square method (TLS) and gradient descent method (DS). These methods were compared based on two types of standards: Mean square error (MSE), mean absolute percentage error (MAPE), and after comparison using simulation the best method was applied to real data represented by the rate of consumption of the two types of oils a Heavy fuel (HFO) and diesel fuel (D.O) and has been applied several tests to
... Show MoreThis research presents the concepts of compatibility and edge spaces in
In this paper the concepts of weakly (resp., closure, strongly) Perfect Mappings are defined and the important relationships are studied: (a) Comparison between deferent forms of perfect mappings. (b) Relationship between compositions of deferent forms of perfect mappings. (c) Investigate relationships between deferent forms of perfect mappings and their graphs mappings.
The current paper studied the concept of right n-derivation satisfying certified conditions on semigroup ideals of near-rings and some related properties. Interesting results have been reached, the most prominent of which are the following: Let M be a 3-prime left near-ring and A_1,A_2,…,A_n are nonzero semigroup ideals of M, if d is a right n-derivation of M satisfies on of the following conditions,
d(u_1,u_2,…,(u_j,v_j ),…,u_n )=0 ∀ 〖 u〗_1 〖ϵA〗_1 ,u_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n ϵA〗_u;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=0 ∀u_1,v_1 〖ϵA〗_1,u_2,v_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n,v_n ϵA〗_u ;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=(u_
The objective of this paper is to define and introduce a new type of nano semi-open set which called nano -open set as a strong form of nano semi-open set which is related to nano closed sets in nano topological spaces. In this paper, we find all forms of the family of nano -open sets in term of upper and lower approximations of sets and we can easily find nano -open sets and they are a gate to more study. Several types of nano open sets are known, so we study relationship between the nano -open sets with the other known types of nano open sets in nano topological spaces. The Operators such as nano -interior and nano -closure are the part of this paper.
We introduce in this paper some new concepts in soft topological spaces such as soft simply separated, soft simply disjoint, soft simply division, soft simply limit point and we define soft simply connected spaces, and we presented soft simply Paracompact spaces and studying some of its properties in soft topological spaces. In addition to introduce a new types of functions known as soft simply
In this paper we show that if ? Xi is monotonically T2-space then each Xi is monotonically T2-space, too. Moreover, we show that if ? Xi is monotonically normal space then each Xi is monotonically normal space, too. Among these results we give a new proof to show that the monotonically T2-space property and monotonically normal space property are hereditary property and topologically property and give an example of T2-space but not monotonically T2-space.
This paper introduces some properties of separation axioms called α -feeble regular and α -feeble normal spaces (which are weaker than the usual axioms) by using elements of graph which are the essential parts of our α -topological spaces that we study them. Also, it presents some dependent concepts and studies their properties and some relationships between them.