In this paper we define and study new concepts of fibrwise totally topological spaces over B namely fibrewise totally compact and fibrwise locally totally compact spaces, which are generalization of well known concepts totally compact and locally totally compact topological spaces. Moreover, we study relationships between fibrewise totally compact (resp, fibrwise locally totally compact) spaces and some fibrewise totally separation axioms.
The aim of the research is to apply fibrewise multi-emisssions of the paramount separation axioms of normally topology namely fibrewise multi-T0. spaces, fibrewise multi-T1 spaces, fibrewise multi-R0 spaces, fibrewise multi-Hausdorff spaces, fibrewise multi-functionally Hausdorff spaces, fibrewise multi-regular spaces, fibrewise multi-completely regular spaces, fibrewise multi-normal spaces and fibrewise multi-functionally normal spaces. Also we give many score regarding it.
Abstract
This study turns about The Military Thinking and His Islamic balance in
The Caliph Ali Bin Abi Talib ( peace is on him ) Compact to Malek Al Ashtar
(God be pleased on him )The military field is very wide in all intellectual and
practically effects at The Caliph Ali Bin Abi Taleb(peace is on him ). Its
considered the first seed for islam ,therefore,there are a lot from military
situtions which proved his practical experience in these affairs , and away
from the details of war and practical battles lets search the sample and the
academic study for fair military thinking (justice) in The Compact of Caliph Ali
to Malek Al Ashtar when he became the ruler of egypt.
The military fair thinking determines fr
We introduce in this paper some new concepts in soft topological spaces such as soft simply separated, soft simply disjoint, soft simply division, soft simply limit point and we define soft simply connected spaces, and we presented soft simply Paracompact spaces and studying some of its properties in soft topological spaces. In addition to introduce a new types of functions known as soft simply
In this paper we show that if ? Xi is monotonically T2-space then each Xi is monotonically T2-space, too. Moreover, we show that if ? Xi is monotonically normal space then each Xi is monotonically normal space, too. Among these results we give a new proof to show that the monotonically T2-space property and monotonically normal space property are hereditary property and topologically property and give an example of T2-space but not monotonically T2-space.
Within that research, we introduce fibrewise fuzzy types of the most important separation axioms in ordinary fuzz topology, namely fibrewise fuzzy (T 0 spaces, T 1 spaces, R 0 spaces, Hausdorff spaces, functionally Hausdorff spaces, regular spaces, completely regular spaces, normal spaces, and normal spaces). Too we add numerous outcomes about it.
This research presents the concepts of compatibility and edge spaces in
The theory of general topology view for continuous mappings is general version and is applied for topological graph theory. Separation axioms can be regard as tools for distinguishing objects in information systems. Rough theory is one of map the topology to uncertainty. The aim of this work is to presented graph, continuity, separation properties and rough set to put a new approaches for uncertainty. For the introduce of various levels of approximations, we introduce several levels of continuity and separation axioms on graphs in Gm-closure approximation spaces.
In this paper,there are new considerations about the dual of a modular spaces and weak convergence. Two common fixed point theorems for a -non-expansive mapping defined on a star-shaped weakly compact subset are proved, Here the conditions of affineness, demi-closedness and Opial's property play an active role in the proving our results.