Preferred Language
Articles
/
-xbNrooBVTCNdQwCh6Kt
Dynamical Behaviours of Stage-Structured Fractional-Order Prey-Predator Model with Crowley-Martin Functional Response
...Show More Authors

In this paper, the dynamic behaviour of the stage-structure prey-predator fractional-order derivative system is considered and discussed. In this model, the Crowley–Martin functional response describes the interaction between mature preys with a predator.  e existence, uniqueness, non-negativity, and the boundedness of solutions are proved. All possible equilibrium points of this system are investigated.  e su‰cient conditions of local stability of equilibrium points for the considered system are determined. Finally, numerical simulation results are carried out to con‹rm the theoretical results.

Scopus
Preview PDF
Quick Preview PDF
Publication Date
Fri Aug 28 2020
Journal Name
Iraqi Journal Of Science
The Local Bifurcation of an Eco-Epidemiological Model in the Presence of Stage- Structured with Refuge
...Show More Authors

In this paper, we establish the conditions of the occurrence of the local bifurcations, such as saddle node, transcritical and pitchfork, of all equilibrium points of an eco-epidemiological model consisting of a prey-predator model with SI (susceptible-infected) epidemic diseases in prey population only and a refuge-stage structure in the predators. It is observed that there is a transcritical bifurcation near the axial and free predator equilibrium points, near disease-free equilibrium point is a saddle-node bifurcation and near positive (coexistence) equilibrium point is a saddle-node bifurcation, a transcritical bifurcation and a pitchfork bifurcation. Further investigations for Hopf bifurcation near coexistence equilibrium point are

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Mar 27 2020
Journal Name
Iraqi Journal Of Science
On The Mathematical Model of Two- Prey and Two-Predator Species
...Show More Authors

In this work, we study two species of predator with two species of prey model, where the two species of prey live in two diverse habitats and have the ability to group-defense. Only one of the two predators tends to switch between the habitats. The mathematical model has at most 13 possible equilibrium points, one of which is the point of origin, two are axial, tow are interior points and the others are boundary points. The model with , where n is the switching index, is discussed regarding the boundedness of its solutions and the local stability of its equilibrium points. In addition, a basin of attraction was created for the interior point. Finally, three numerical examples were given to support the theoretical results.

View Publication Preview PDF
Scopus (6)
Scopus Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Journal Of Physics: Conference Series
The Fear Effect on a Food Chain Prey-Predator Model Incorporating a Prey Refuge and Harvesting
...Show More Authors
Abstract<p>In this paper, we investigate the impact of fear on a food chain mathematical model with prey refuge and harvesting. The prey species reproduces by to the law of logistic growth. The model is adapted from version of the Holling type-II prey-first predator and Lotka-Volterra for first predator-second predator model. The conditions, have been examined that assurance the existence of equilibrium points. Uniqueness and boundedness of the solution of the system have been achieve. The local and global dynamical behaviors are discussed and analyzed. In the end, numerical simulations are confirmed the theoretical results that obtained and to display the effectiveness of varying each parameter</p> ... Show More
View Publication
Scopus (10)
Crossref (7)
Scopus Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
The Dynamics of Sokol-Howell Prey-Predator Model Involving Strong Allee Effect
...Show More Authors

In this paper,  a Sokol-Howell prey-predator model involving strong Allee effect is proposed and analyzed. The existence, uniqueness, and boundedness are studied. All the five possible equilibria have been are obtained and their local stability conditions are established. Using Sotomayor's theorem, the conditions of local saddle-node and transcritical and pitchfork bifurcation are derived and drawn. Numerical simulations are performed to clarify the analytical results

View Publication
Scopus (6)
Scopus Crossref
Publication Date
Wed Jun 28 2023
Journal Name
Mathematics
The Impact of Fear on a Harvested Prey–Predator System with Disease in a Prey
...Show More Authors

A mathematical eco-epidemiological model consisting of harvested prey–predator system involving fear and disease in the prey population is formulated and studied. The prey population is supposed to be separated into two groups: susceptible and infected. The susceptible prey grows logistically, whereas the infected prey cannot reproduce and instead competes for the environment’s carrying capacity. Furthermore, the disease is transferred through contact from infected to susceptible individuals, and there is no inherited transmission. The existence, positivity, and boundedness of the model’s solution are discussed. The local stability analysis is carried out. The persistence requirements are established. The global behavior of th

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Results In Control And Optimization
Impact of wind flow and global warming in the dynamics of prey–predator model
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Iraqi Journal Of Science
The Effects of Media Coverage on the Dynamics of Disease in Prey-Predator Model
...Show More Authors

In this paper, an eco-epidemiological model with media coverage effects is established and studied. An -type of disease in predator is considered.  All the properties of the solution of the proposed model are discussed. An application to the stability theory was carried out to investigate the local as well as global stability of the system. The persistence conditions of the model are determined. The occurrence of local bifurcation in the model is studied. Further investigation of the global dynamics of the model is achieved through using a numerical simulation.

View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Optimal Harvesting Strategy of a Discretization Fractional-Order Biological Model
...Show More Authors

     Optimal control methods are used to get an optimal policy for harvesting renewable resources. In particular, we investigate a discretization fractional-order biological model, as well as its behavior through its fixed points, is analyzed. We also employ the maximal Pontryagin principle to obtain the optimal solutions. Finally, numerical results confirm our theoretical outcomes.

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Tue Mar 26 2019
Journal Name
International Journal Of Mathematics And Mathematical Sciences
Stability and Bifurcation of a Prey-Predator-Scavenger Model in the Existence of Toxicant and Harvesting
...Show More Authors

In this paper a prey-predator-scavenger food web model is proposed and studied. It is assumed that the model considered the effect of harvesting and all the species are infected by some toxicants released by some other species. The stability analysis of all possible equilibrium points is discussed. The persistence conditions of the system are established. The occurrence of local bifurcation around the equilibrium points is investigated. Numerical simulation is used and the obtained solution curves are drawn to illustrate the results of the model. Finally, the nonexistence of periodic dynamics is discussed analytically as well as numerically.

Scopus (24)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Sat Nov 01 2014
Journal Name
International Journal Of Basic And Applied Sciences
A reliable iterative method for solving the epidemic model and the prey and predator problems
...Show More Authors

In the present article, we implement the new iterative method proposed by Daftardar-Gejji and Jafari (NIM) [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve two problems; the first one is the problem of spread of a non-fatal disease in a population which is assumed to have constant size over the period of the epidemic, and the other one is the problem of the prey and predator. The results demonstrate that the method has many merits such as being derivative-free, overcome the difficulty arising in calculating Adomian polynomials to handle the nonlinear terms in Adomian Decomposition Method (ADM), does not require to calculate Lagrange multiplier a

... Show More
View Publication
Crossref (4)
Crossref