Abstract Throughout this paper R represents commutative ring with identity and M is a unitary left R-module, the purpose of this paper is to study a new concept, (up to our knowledge), named St-closed submodules. It is stronger than the concept of closed submodules, where a submodule N of an R-module M is called St-closed (briefly N ≤Stc M) in M, if it has no proper semi-essential extensions in M, i.e if there exists a submodule K of M such that N is a semi-essential submodule of K then N = K. An ideal I of R is called St-closed if I is an St-closed R-submodule. Various properties of St-closed submodules are considered.
The aim of this work is studying many concepts of a pure submodule related to sub-module L and introducing the two concepts, T_pure submodule related to submodule and the crossing property of T_pure related to submodule. Another characterizations and study some properties of this concept.
The goal of this research is to introduce the concepts of Large-small submodule and Large-hollow module and some properties of them are considered, such that a proper submodule N of an R-module M is said to be Large-small submodule, if N + K = M where K be a submodule of M, then K is essential submodule of M ( K ≤e M ). An R-module M is called Large-hollow module if every proper submodule of M is Large-small submodule in M.
Let be a module over a commutative ring with identity. In this paper we intoduce the concept of Strongly Pseudo Nearly Semi-2-Absorbing submodule, where a proper submodule of an -module is said to be Strongly Pseudo Nearly Semi-2-Absorbing submodule of if whenever , for implies that either or , this concept is a generalization of 2_Absorbing submodule, semi 2-Absorbing submodule, and strong form of (Nearly–2–Absorbing, Pseudo_2_Absorbing, and Nearly Semi–2–Absorbing) submodules. Several properties characterizations, and examples concerning this new notion are given. We study the relation between Strongly Pseudo Nearly Semei-2-Absorbing submodule and (2_Absorbing, Nearly_2_Absorbing, Pseudo_2_Absorbing, and Nearly S
... Show MoreIn this paper ,we introduce hollow modules with respect to an arbitrary submodule .Let M be a non-zero module and T be a submodule of M .We say that M is aT-hollow module if every proper submodule K of M such that T ⊈ K is a T-small submodule of M .We investigate the basic properties of a T-hollow module
Throughout this paper R represents commutative ring with identity, and M is a unitary left R-module. The purpose of this paper is to study a new concept, (up to our knowledge), named a semi-extending modules, as generalization of extending modules, where an Rmodule M is called semi-extending if every sub module of M is a semi-essential in a direct summand of M. Various properties of semi-extending module are considered. Moreover, we investigate the relationships between semi-extending modules and other related concepts, such as CLS-modules and FI- extending modules.
The purpose of this paper is to give the condition under which every weakly closed
function is closed and to give the condition under which the concepts of weaklysemi
closed function and weakly pre-closed function are equivalent. Moreover,
characterizations and properties of weakly semi closed functions and weakly preclosed
function was given.
The main purpose of this paper is to study feebly open and feebly closed mappings and we proved several results about that by using some concepts of topological feebly open and feebly closed sets , semi open (- closed ) set , gs-(sg-) closed set and composition of mappings.
Let R be a commutative ring with identity and let M be a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of semi-essential submodules which introduced by Ali S. Mijbass and Nada K. Abdullah, and we make simple changes to the definition relate with the zero submodule, so we say that a submodule N of an R-module M is called semi-essential, if whenever N ∩ P = (0), then P = (0) for each prime submodule P of M. Various properties of semi-essential submodules are considered.
In this paper, we introduce and study the concept of a new class of generalized closed set which is called generalized b*-closed set in topological spaces ( briefly .g b*-closed) we study also. some of its basic properties and investigate the relations between the associated topology.
Objectives: to evaluate the role of conservative, decompression, spine fixation in management of closed spinal injury.
Methods: The study was conducted at Specialized Surgical hospital and Al-Kadhemayia Teaching Hospital, in the period between July 2003 and July 2005.The study included 61 patients categorized Into many groups according level of vertebral injury (cervical, cervicodorsal, dorsal, dorsolumbar, Lumbar and lumbosacral), type of injury (compressed fracture, burst fracture and fracture dislocation) And according the severity into three groups as G1( complete motor paralysis and sensory loss ) G2 ( complete motor paralysis and incomplete sensory loss) and G3 ( incomplete motor paralysis And incomplete sensory loss ).The metho