The importance of topology as a tool in preference theory is what motivates this study in which we characterize topologies generating by digraphs. In this paper, we generalized the notions of rough set concepts using two topological structures generated by out (resp. in)-degree sets of vertices on general digraph. New types of topological rough sets are initiated and studied using new types of topological sets. Some properties of topological rough approximations are studied by many propositions.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise closure topological spaces, fibrewise wake topological spaces, fibrewise strong topological spaces over B. Also, we introduce the concepts of fibrewise w-closed (resp., w-coclosed, w-biclosed) and w-open (resp., w-coopen, w-biopen) topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.
This research aims to estimate stock returns, according to the Rough Set Theory approach, test its effectiveness and accuracy in predicting stock returns and their potential in the field of financial markets, and rationalize investor decisions. The research sample is totaling (10) companies traded at Iraq Stock Exchange. The results showed a remarkable Rough Set Theory application in data reduction, contributing to the rationalization of investment decisions. The most prominent conclusions are the capability of rough set theory in dealing with financial data and applying it for forecasting stock returns.The research provides those interested in investing stocks in financial
... Show MoreRelation on a set is a simple mathematical model to which many real-life data can be connected. A binary relation on a set can always be represented by a digraph. Topology on a set can be generated by binary relations on the set . In this direction, the study will consider different classical categories of topological spaces whose topology is defined by the binary relations adjacency and reachability on the vertex set of a directed graph. This paper analyses some properties of these topologies and studies the properties of closure and interior of the vertex set of subgraphs of a digraph. Further, some applications of topology generated by digraphs in the study of biological systems are cited.
Our main interest in this study is to look for soft semi separations axioms in soft quad topological spaces. We talk over and focus our attention on soft semi separation axioms in soft quad topological spaces with respect to ordinary points and soft points. Moreover study the inherited characteristics at different angles with respect to ordinary points and soft points. Some of their central properties in soft quad topological spaces are also brought under examination.
This paper is devoted to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuzzy -ω-topological spaces, weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω- topological spaces. Also, Several characterizations and properties of this class are also given as well. Finally, we focused on studying the relationship between weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω-topological spaces.
In this paper, we introduced some new definitions on P-compact topological ring and PL-compact topological ring for the compactification in topological space and rings, we obtain some results related to P-compact and P-L compact topological ring.
The concept of fuzzy orbit open sets under the mapping
Fibrewise topological spaces theory is a relatively new branch of mathematics, less than three decades old, arisen from algebraic topology. It is a highly useful tool and played a pivotal role in homotopy theory. Fibrewise topological spaces theory has a broad range of applications in many sorts of mathematical study such as Lie groups, differential geometry and dynamical systems theory. Moreover, one of the main objects, which is considered in fibrewise topological spaces theory is connectedness. In this regard, we of the present study introduce the concept of connected fibrewise topological spaces and study their main results.
We introduce and discuss the modern type of fibrewise topological spaces, namely fibrewise fuzzy topological spaces. Also, we introduce the concepts of fibrewise closed fuzzy topological spaces, fibrewise open fuzzy topological spaces, fibrewise locally sliceable fuzzy topological spaces and fibrewise locally sectionable fuzzy topological spaces. Furthermore, we state and prove several theorems concerning these concepts.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise Lindelöf and locally Lindelöf topological spaces, which are generalizations of will-known concepts: Lindelöf topological space (1) "A topological space X is called a Lindelöf space if for every open cover of X has a countable subcover" and locally Lindelöf topological space (1) "A topological space X is called a locally Lindelöf space if for every point x in X, there exist a nbd U of x such that the closure of U in X is Lindelöf space". Either the new concepts are: "A fibrewise topological space X over B is called a fibrewise Lindelöf if the projection function p : X→B is Lindelöf" and "The fibrewise topological space X over B
... Show More