The Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The developed ANN mode gave a high correlation coefficient reaching 0.927 for the prediction of TDS from the model and showed high levels of TDS in Al-Hawizeh marsh that pose threats to people using the marsh for drinking and other uses. The dissolved Oxygen concentration has the highest importance of 100% in the model because the water of the marsh is fresh water, while Turbidity had the lowest importance.
Projects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postpo
Objectives of the study: To assess nurses knowledge regarding oxytocin administration during labor and
delivery in maternity hospitals, and to find out the relationship between nurses knowledge and studied
variables (age, level of education, work times (shift) experience year, training course in nursing field).
Methodology: Descriptive analytic study was conducted on non-probability sample (convenient) of (70) nurses
to assess nurse’s knowledge related to oxytocin administration. The study is conducted at Al- kut Hospital for
Gynecology Obstetrics and Pediatrics and Al- Zahraa Teaching Hospital during periods 5th February to 24th
April 2013, A questionnaire was used as a tool of data collection to fulfill with objecti
capable of the measuring with a high degree of precision in a single instrument. Total stations device are used for station setting up, setting-outmany points from one station. Their major purpose of this work is to take advantage of total station for setting up building and to establish 3D representation using AutoCAD program. The area of the study was Civil Engineering Department at Baghdad University campus AL Jadiriyah. The completion of the work is done in two stages; 1. The field work: In this stage, the Total Station Nikon Nivo-5C was selected for the current study. This device was measured horizontal and vertical distance, elevations, and coordinates from a single set up. This data directly stored on memory. 2. The office work: In t
... Show MoreLaser shock peening (LSP) is deemed as a deep-rooted technology for stimulating compressive residual stresses below the surface of metallic elements. As a result, fatigue lifespan is improved, and the substance properties become further resistant to wear and corrosion. The LSP provides more unfailing surface treatment and a potential decrease in microstructural damage. Laser shock peening is a well-organized method measured up to the mechanical shoot peening. This kind of surface handling can be fulfilled via an intense laser pulse focused on a substantial surface in extremely shorter intervals. In this work, Hydrofluoric Acid (HF) and pure water as a coating layer were utilized as a new technique to improve the properti
... Show MoreThe COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreThe application of ultrafiltration (UF) and nanofiltration (NF) processes in the handling of raw produced water have been investigated in the present study. Experiments of both ultrafiltration and nanofiltration processes are performed in a laboratory unit, which is operated in a cross-flow pattern. Various types of hollow fiber membranes were utilized in this study such as poly vinyl chloride (PVC) UF membrane, two different polyether sulfone (PES) NF membranes, and poly phenyl sulfone PPSU NF membrane. It was found that the turbidity of the treated water is higher than 95 % by using UF and NF membranes. The chemical oxygen demand COD (160 mg/l) and Oil content (26.8 mg/l) were found after treatment according to the allowable limits set
... Show MoreBackground: Toxin-producing Shiga Escherichia coli has been identified as a new foodborne pathogen that poses a significant health risk to humans. Shiga toxin-producing Escherichia coli can be found in raw cow milk and its derivatives. A small number of Escherichia coli strains that produce shiga toxin are pathogenic. Aim of study: The study aimed to see if there were any virulence genes in 50 milk samples that were typical of Entero-haemorrhagic E. coli and evaluate the Myrtus communis effects on these bacteria. Materials and Method: Milk samples were used to isolate E. coli bacteria (n= 27), biochemically analyzed, and genetically screened for virulence genes using a multiplex (PCR). The hydro-alcoholic extraction of Myrtus communis leave
... Show MoreThe accumulation of sediment in reservoirs poses a major challenge that impacts the storage capacity, quality of water, and efficiency of hydroelectric power generation systems. Geospatial methods, including Geographic Information Systems (GIS) and Remote Sensing (RS), were used to assess Dukan Reservoir sediment quantities. Satellite and reservoir water level data from 2010 to 2022 were used for sedimentation assessment. The satellite data was used to analyze the water spread area, employing the Normalized Difference Water Index (NDWI) and Modified Normalized Difference Water Index (MNDWI) to enhance the water surface in the satellite imagery of Dukan Reservoir. The cone formula was employed to calculate the live storag
... Show MoreThe specific activity of 29 soil samples collected from Fuel
Fabrication Facility FFF at AL-Tuwaitha site, 20 km south of
Baghdad were determined using HPGe detector in a low background
configuration, it's relative efficiency of 40%, and resolution of 2keV
for the 1332 keV gamma ray emission of 60Co. The range of activity
concentrations of 226Ra, 232Th and 40K were between (12.56-31.96),
(10.2-18.4) and (47.47-402.1) Bq/kg respectively. In order to assess
any radiological hazard to human health, the absorbed gamma dose
rate D in air at 1m above the ground surface was calculated in the
range (18.87 to 36.46) nGy/h; the outdoor annual effective dose
equivalent AEDE was evaluated to vary from 0.0039 to 0.0076
This paper presents a modified training method for Recurrent Neural Networks. This method depends on the Non linear Auto Regressive (NARX) model with Modified Wavelet Function as activation function (MSLOG) in the hidden layer. The modified model is known as Modified Recurrent Neural (MRN). It is used for identification Forward dynamics of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot. This model is also used in the design of Direct Inverse Control (DIC). This method is compared with Recurrent Neural Networks that used Sigmoid activation function (RS) in the hidden layer and Recurrent Neural Networks with Wavelet activation function (RW). Simulation results shows that the MRN model is bett
... Show More