Objectives: This study aimed to evaluate and compare the effect of plasma treatment versus conventional treatment on the micro shear bond strength (μSBS), surface roughness, and wettability of three different CAD/CAM materials. Materials and methods: Sixty cylindrical specimens (5 mm diameter ×3 mm height) were prepared from three different CAD/CAM materials: Group A: Zirconia, Group B: Lithium disilicate, and Group C: Resin nano-ceramic. Each group was subdivided into two subgroups according to surface treatment used: Subgroup I: Conventional treatment, zirconia was sandblasted with Al2O3, while lithium disilicate and resin nano-ceramic were etched with hydrofluoric acid. Subgroup II: Plasma treatment, the surface of each material was treated with a plasma device (PiezoBrush® PZ3 Handheld Device, Relyon Plasma, Regensburg, Germany). G-Multi PRIMER was applied, then self-adhesive cement (G-CEM ONE) was applied using a split mold (1 mm diameter ×3 mm height), and μSBS was tested in a universal testing machine. The surface roughness was measured using a profilometer. Nine additional specimens of each material for wettability test using an optical tensiometer. Statistical analysis: The data were analyzed using ANOVA and Bonferroni test at a level of significance of 0.05. Results: The highest mean of μSBS was recorded by AII (27.3 MPa), while the lowest was recorded by AI (17.9 MPa). One-way ANOVA test revealed a significant difference among groups. Bonferroni test showed each two subgroups significant difference except subgroups AI, CI and BII, CII, where there was a non-significant difference. For all CAD/CAM materials, conventional treatment increased the surface roughness compared to plasma treatment, while the contact angle decreased after plasma treatment. Conclusion: Plasma treatment increased the μSBS of resin cement to zirconia significantly while not significantly affecting the μSBS of resin nano-ceramic. Conventional treatment of lithium disilicate provided significantly higher μSBS than plasma treatment.
The study of biomechanical indicators in the arc of the run and the upgrading stage is one of the important variables that affect the nature of the upgrading and thus affect the result of the race due to the importance of these stages and the consequent variables during the last steps. That’s why, the jump-trainings based on assistant means or body weight positively affect the step-time for each of the three steps in the acceleration arc. As well as, it focuses on the momentary strength of each step at this stage. It also significantly affects the speed of motor performance to suit the activity in which the runner needs to perform perfect steps with high flow in order to convert the horizontal speed to a vertical one. This is achieved thr
... Show MoreDBN Rashid, Al- Utroha Journal, 2018
EM International
In this work, the plasma parameters (electron temperature and
electron density) were determined by optical emission spectroscopy
(OES) produced by the RF magnetron Zn plasma produced by
oxygen and argon at different working pressure. The spectrum was
recorded by spectrometer supplied with CCD camera, computer and
NIST standard of neutral and ionic lines of Zn, argon and oxygen.
The effects of pressure on plasma parameters were studied and a
comparison between the two gasses was made.
This work aim to prepare Ag/R6G/PMMA nanocomposite thin
films by In-situ plasma polymerization and study the changes in the
optical properties of fluorophore due to the presence of Ag
nanoparticles structures in the vicinity of the R6G laser dye. The
concentrations of R6G dye/MMA used are: 10-4M solutions were
prepared by dissolving the required quantity of the R6G dye in
MMAMonomer. Then Silver nanoparticles with 50 average particles
size were mixed with MMAmonomer with concentration of 0.3, 0.5,
0.7wt% to get R6G silver/MMA in liquid phase. The films were
deposited on glass substrates by dielectric barrier discharge plasma
jet. The Ag/R6G/PMMA nanocomposite thin films were
characterization by UV-Visible
Background: The ideal force-delivery system must: provide optimal tooth moving forces that elicit the desired effects, be comfortable and hygienic for the patient, require minimal operator manipulation and patient cooperation and provide rapid tooth movement with minimal mobility during orthodontic therapy, the elastomeric chains have the greatest potential to fulfill these requirements. Materials and Methods: This in vitro study was designed to determine the effect of three different mechanisms for canine retraction : (6-3 , 6-5-3 and chain loop ) on the load relaxation behavior of three types of elastomeric chains : (maximum clear , maximum silver and extreme silver) from the same company (Ortho Technology company) with two different bran
... Show MoreThe electrocoagulation process became one of the most important technologies used for water treatment processes in the last few years. It’s the preferred method to remove suspended solids and heavy metals from water for treating drinking water and wastewater from textile, diary, and electroplating factories. This research aims to study the effect of using the electrocoagulation process with aluminum electrodes on the removal efficiency of suspended solids and turbidity presented in raw water and optimizing by the response surface methodology (RSM). The most important variables studied in this research included electrode spacing, the applied voltage, and the operating time of the electrocoagulation process. The samples
... Show More