Contracting cancer typically induces a state of terror among the individuals who are affected. Exploring how chemotherapy and anxiety work together to affect the speed at which cancer cells multiply and the immune system’s response model is necessary to come up with ways to stop the spread of cancer. This paper proposes a mathematical model to investigate the impact of psychological scare and chemotherapy on the interaction of cancer and immunity. The proposed model is accurately described. The focus of the model’s dynamic analysis is to identify the potential equilibrium locations. According to the analysis, it is possible to establish three equilibrium positions. The stability analysis reveals that all equilibrium points consistently exhibit stability under the defined conditions. The bifurcations occurring at the equilibrium sites are derived. Specifically, we obtained transcritical, pitchfork, and saddle-node bifurcation. Numerical simulations are employed to validate the theoretical study and ascertain the minimum therapy dosage necessary for eradicating cancer in the presence of psychological distress, thereby mitigating harm to patients. Fear could be a significant contributor to the spread of tumors and weakness of immune functionality.
This paper aims to introduce a concept of an equilibrium point of a dynamical system which will call it almost global asymptotically stable. We also propose and analyze a prey-predator model with a suggested function growth in prey species. Firstly the existence and local stability of all its equilibria are studied. After that the model is extended to an optimal control problem to obtain an optimal harvesting strategy. The discrete time version of Pontryagin's maximum principle is applied to solve the optimality problem. The characterization of the optimal harvesting variable and the adjoint variables are derived. Finally these theoretical results are demonstrated with numerical simulations.
In this work, the dynamic behavior of discrete models is analyzed with Beverton- Holt function growth . All equilibria are found . The existence and local stability are investigated of all its equilibria.. The optimal harvest strategy is done for the system by using Pontryagin’s maximum principle to solve the optimality problem. Finally numerical simulations are used to solve the optimality problem and to enhance the results of mathematical analysis
The avoidance strategy of prey to predation and the predation strategy for predators are important topics in evolutionary biology. Both prey and predators adjust their behaviors in order to obtain the maximal benefits and to raise their biomass for each. Therefore, this paper is aimed at studying the impact of prey’s fear and group defense against predation on the dynamics of the food-web model. Consequently, in this paper, a mathematical model that describes a tritrophic Leslie-Gower food-web system is formulated. Sokol-Howell type of function response is adapted to describe the predation process due to the prey’s group defensive capability. The effects of fear due to the predation process are considered in the first two levels
... Show MoreThe goal of this paper is to study dynamic behavior of a sporadic model (prey-predator). All fixed points of the model are found. We set the conditions that required to investigate the local stability of all fixed points. The model is extended to an optimal control model. The Pontryagin's maximum principle is used to achieve the optimal solutions. Finally, numerical simulations have been applied to confirm the theoretical results.
The current study aims to investigate the effect of (SWOM) strategy on acquiring the psychological concepts of educational psychology course and its retention among education college students. To do this, a sample of (57) male and female student were intentionally selected from first grade, Kurdish department / college of education / Ibin Rushd of human sciences. The sample distributed on two classes, whereby the experimental group consisted of (28) student were taught according to the (SWOM) strategy while the control group made up of (29) student were taught based on the tradition method. The two researchers designed a scale included (50) item to measure students' achievement. The experiment lasted for ten weeks, SPSS was used
... Show MoreThis paper is concerned with the existence of a unique state vector solution of a couple nonlinear hyperbolic equations using the Galerkin method when the continuous classical control vector is given, the existence theorem of a continuous classical optimal control vector with equality and inequality vector state constraints is proved, the existence of a unique solution of the adjoint equations associated with the state equations is studied. The Frcéhet derivative of the Hamiltonian is obtained. Finally the theorems of the necessary conditions and the sufficient conditions of optimality of the constrained problem are proved.
The aim of research is to identify the effect of using Waks strategy upon acquiring the psychological concepts and mind habits for students in the college of education. An experimental design with a partial adjustment of two experimental and control groups as well as a posttest were employed. The researcher divided the study sample into two groups: group one consisted of (38) students to represent the experimental group that was taught according to the waks strategy, and group two consisted of (35) students to represent the control group that was taught according to the traditional method. The sample was chosen based on some variables namely (Intelligence, Prior knowledge). The researcher has designed the research tools as th
... Show More