In this work, nonlinear diabetes controlled model with and without complications in a population is considered. The dynamic behavior of diabetes in a population by including a constant control is studied and investigated. The existence of all its possible fixed points is investigated as well as the conditions of the local stability of the considered model are set. We also find the optimal control strategy in order to reduce the number of people having diabetes with complications over a finite period of time. A numerical simulation is provided and confirmed the theoretical results.
Optimal control methods are used to get an optimal policy for harvesting renewable resources. In particular, we investigate a discretization fractional-order biological model, as well as its behavior through its fixed points, is analyzed. We also employ the maximal Pontryagin principle to obtain the optimal solutions. Finally, numerical results confirm our theoretical outcomes.
HIV is a leading cause of death, in particular, in Sub-Saharan Africa. In this paper, a fractional differential system in vivo deterministic models for HIV dynamics is presented and analyzed. The main roles played by different HIV treatment methods are investigated using fractional optimal control theory. We use three treatment regimens as system control variables to determine the best strategies for controlling the infection. The optimality system is numerically solved using the fractional Adams-Bashforth technique.
Abstract
In this paper, the solutions to class of robust non-linear semi-explicit descriptor control systems with matching condition via optimal control strategy are obtained. The optimal control strategy has been introduced and developed in the sense that, the optimal control solution is robust solution to the given non-linear uncertain semi-explicit descriptor control system. The necessary mathematical proofs and remarks as well as discussions are also proposed. The present approach is step-by-step illustrated by application example to show its effectiveness a and efficiency to compensate the structure uncertainty in the given semi-explicit (descriptor) control
... Show MoreIn this article, we investigate a mathematical fractional model of tuberculosis that takes into account vaccination as a possible way to treat the disease. We use an in-host tuberculosis fractional model that shows how Macrophages and Mycobacterium tuberculosis interact to knowledge of how vaccination treatments affect macrophages that have not been infected. The existence of optimal control is proven. The Hamiltonian function and the maximum principle of the Pontryagin are used to describe the optimal control. In addition, we use the theory of optimal control to develop an algorithm that leads to choosing the best vaccination plan. The best numerical solutions have been discovered using the forward and backward fractional Euler
... Show MoreContracting cancer typically induces a state of terror among the individuals who are affected. Exploring how chemotherapy and anxiety work together to affect the speed at which cancer cells multiply and the immune system’s response model is necessary to come up with ways to stop the spread of cancer. This paper proposes a mathematical model to investigate the impact of psychological scare and chemotherapy on the interaction of cancer and immunity. The proposed model is accurately described. The focus of the model’s dynamic analysis is to identify the potential equilibrium locations. According to the analysis, it is possible to establish three equilibrium positions. The stability analysis reveals that all equilibrium points consi
... Show MoreIn this paper, game theory was used and applied to the transport sector in Iraq, as this sector includes two axes, the public transport axis and the second axis the private transport axis, as each of these axes includes several types of transport, namely (sea transport, air transport, land transport, transport by rail, port transport) and the travel and tourism sector, as public transport lacks this sector, as the competitive advantage matrix for the transport sector was formed and after applying the MinMax-MaxMin principle to the matrix in all its stages, it was found that there was an equilibrium point except for the last stage where the equilibrium point was not available Therefore, the use of the linear programming method was
... Show Morethis paper presents a novel method for solving nonlinear optimal conrol problems of regular type via its equivalent two points boundary value problems using the non-classical
Oil sector is one of the most important sectors affecting the ecological balance, as activity contributes to the oil companies to influence their working environment, both during the oil exploration and extraction process or during transfer from one place to another process. We will try through this research put an environmental audit program proposal takes into account all the financial aspects, commitment and performance, according to the laws and regulations and agreements as well as relevant international standards, was based on research on the premise that the development of an environmental proposal auditing program that includes environmental controls on oil industry phases which helps reduce or minimize environmental pollutants B
... Show More