Objectives: This study aimed to evaluate and compare the effect of plasma treatment versus conventional treatment on the micro shear bond strength (μSBS), surface roughness, and wettability of three different CAD/CAM materials. Materials and methods: Sixty cylindrical specimens (5 mm diameter ×3 mm height) were prepared from three different CAD/CAM materials: Group A: Zirconia, Group B: Lithium disilicate, and Group C: Resin nano-ceramic. Each group was subdivided into two subgroups according to surface treatment used: Subgroup I: Conventional treatment, zirconia was sandblasted with Al2O3, while lithium disilicate and resin nano-ceramic were etched with hydrofluoric acid. Subgroup II: Plasma treatment, the surface of each material was treated with a plasma device (PiezoBrush® PZ3 Handheld Device, Relyon Plasma, Regensburg, Germany). G-Multi PRIMER was applied, then self-adhesive cement (G-CEM ONE) was applied using a split mold (1 mm diameter ×3 mm height), and μSBS was tested in a universal testing machine. The surface roughness was measured using a profilometer. Nine additional specimens of each material for wettability test using an optical tensiometer. Statistical analysis: The data were analyzed using ANOVA and Bonferroni test at a level of significance of 0.05. Results: The highest mean of μSBS was recorded by AII (27.3 MPa), while the lowest was recorded by AI (17.9 MPa). One-way ANOVA test revealed a significant difference among groups. Bonferroni test showed each two subgroups significant difference except subgroups AI, CI and BII, CII, where there was a non-significant difference. For all CAD/CAM materials, conventional treatment increased the surface roughness compared to plasma treatment, while the contact angle decreased after plasma treatment. Conclusion: Plasma treatment increased the μSBS of resin cement to zirconia significantly while not significantly affecting the μSBS of resin nano-ceramic. Conventional treatment of lithium disilicate provided significantly higher μSBS than plasma treatment.
Background: the aim of this study was to evaluate the effect of different surface acids treatments (37%phospjoric acid, 5%hydrofluoric acid, 1.23 acidulated phosphate fluoride) of feldspathic ceramic VITA 3D MASTER , and the effect of thermocycling on shear bond strength using a ceramic repair kit (ivoclar/vivadent). Material and Methods: sixty Nickel-Chromium metal base plates were prepared(9mm diameter,3mm depth) using lost wax technique, 2mm thick layer of ceramic(VITA 3D MASTER) fused to metal plates, all specimens were embedded in acrylic resin blocks except their examined surfaces and divided into 3 main groups 20 specimens each, Grp A: treatment with 37%phosphoric acid for 2 mins, Grp B: etching with 5% hydrofluoric acid for 2mins,
... Show MoreThis study aims to evaluate the influence of the air abrasion of dentin on the shear bond strength of lithium disilicate using three different types of luting cements. Sixty cylindrical specimens were milled from lithium disilicate CAD/CAM blocks (IPSe.max CAD). Sixty sound human maxillary premolar teeth were decoronated to the level of peripheral dentin, then randomly divided into three groups according to the type of luting cement used for the cementation of the lithium disilicate specimens (n = 20); Group A: Glass ionomer cement (Riva Self- Cure); Group B: Adhesive resin cement (Rely X Ultimate); Group C: Self-adhesive resin cement (Rely X U200). Each group was then further subdivided into two subgroups (n=10); Subgroups AI, BI, and CI,
... Show More
Objective: To evaluate and compare the effect of mechanical surface treatment (groove, aluminum oxide particles)
with 45 degree bevel type of joint on tensile bond strength of acrylic specimens repaired by two curing methods
(microwave and water both).
Methodology: Eighty specimens (80) were prepared from pink heat cure acrylic resin. They were divided into two
main groups (40 specimen repaired by microwave energy and 40 specimens repaired by water bath method).Each
group can be divided into four subgroups of ten according to the surface treatment. The control group A was left
intact, group B received no surface treatment, group C and D received surface treatment by (groove, 50 m aluminum
oxide particles). Specimens
Background: In dentistry, dentist takes the advantages of soft lining materials due to the viscoelastic properties. The major problem is the adhesion of the soft liner with the denture base material. Materials and Methods: Heat cured of high impact acrylic resin specimens prepared with dimensions 75x13x13mm for shear bond strength test, soft lining material (Refit and Mollosil) with a 3-mm thickness and used to join each two acrylic blocks. Also four specimens with the same previous dimensions utilized for chemical and physical surface analysis. The specimens grouped as control (without plasma) and experiment (with oxygen plasma) treated high impact acrylic specimens. Results: Plasma treatment increased the shear bond strength for both Refi
... Show MoreBackground: The present study was carried out to compare shear bond strength of sapphire bracket bonded to zirconium surface after using different methods of surface conditioning and assessment of the adhesive remnant index. Materials and methods: The sample composed of 40 zirconium specimens divided into four groups; the first group was the control, the second group was conditioned by sandblast with aluminum oxide particle 50 μm, the third and fourth group was treated by (Nd: YAG) laser (1064nm)(0.888 Watt for 5 seconds) for the 1st laser group and (0.444 Watt for 10 seconds) for the 2nd laser group. All samples were coated by z-prime plus primer. A central incisor sapphire bracket was bonded to all samples with light cure adhesive res
... Show MoreIntroduction: The present study was performed to evaluate the influence of a 1064 nm fiber laser on shear bond strength (SBS) at the interface of titanium and resin cement. Methods: Forty titanium discs of 6 mm × 3 mm (diameter and thickness respectively) were categorized into four groups (n=10): control group without any surface treatment and three groups treated with a fiber laser with 81 ns pulse duration, 30 kHz frequency, 10000 mm/s scanning speed, 0.05 mm spot size, and different average power values (3, 5 and 7 W) depending on the tested group. Titanium disc characterization was performed by the scanning electron microscope (SEM) and surface roughness tester. Phase analysis was achieved using an X-ray diffractometer (XRD). F
... Show MoreBackground: This study aimed to evaluate the effect of zirconia different surface treatments (primer, sandblast with 50μmAl2O3, Er,Cr:YSGG laser) on shear bond strength between zirconia surface and resin cement. Material and methods: Sixty presintered Y-TZP zirconia cylinder specimens (IPS e.max ZirCAD, Ivoclar vivadent) will be fabricated and sintered in high temperature furnace of (1500 C for 8 hours) according to manufacturer’s instructions to the selected size and shape of (5mm. in diameter and 6mm in height). All specimens were ground flat using 600.800.1000.1200, aluminum oxide abrasive paper to obtain a standardized surface roughness. Surface roughness values were then recorded in µm using surface roughness tester (profi
... Show MoreBackground: The aim of the study was to investigate the effect of surface treatments of zirconia (grinding and sandblast with 50μm, 100 μm) on shear bond strength between zirconia core and veneering ceramic. Material and methods: Twenty-eight presintered Y-TZP ceramic specimens (IPS e.max ZirCAD, Ivoclar vivadent) were fabricated and sintered according to manufacturer’s instructions. The core specimens were divided randomly in to 4 groups, group 1: no surface treatment, group2: zirconia specimens were ground with silicon carbide paper up to1200 grit under water cooling, group3: zirconia specimens were ground and sandblast with 100 μm alumina, group 4: zirconia specimens were ground and sandblast with 50 μm alumina. Surfa
... Show More