Abstract. This work presents a detailed design of a three-jointed tendon-driven robot finger with a cam/pulleys transmission and joint Variable Stiffness Actuator (VSA). The finger motion configuration is obtained by deriving the cam/pulleys transmission profile as a mathematical solution that is then implemented to achieve contact force isotropy on the phalanges. A VSA is proposed, in which three VSAs are designed to act as a muscle in joint space to provide firm grasping. As a mechatronic approach, a suitable type and number of force sensors and actuators are designed to sense the touch, actuate the finger, and tune the VSAs. The torque of the VSAs is controlled utilizing a designed Multi Input Multi Output (MIMO) fuzzy controller. The fuzzy controller input is the force sensors' signals that are used to set the appropriate VSA torque. The fuzzy controller parameters are then tuned using a genetic algorithm as an optimization technique. The objective function of the genetic algorithm is to avoid unbalance torque in the individual joints and to reduce the difference between the values of the supplied VSAs torques. Finally, the operation of the aforementioned finger system is organized through a simple control algorithm. The function of this algorithm is to enable the detection of the unknown object and simultaneously automatically activate the optimized fuzzy controller thus eliminating the necessity of any external control unit.
Abstract
This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per
... Show MoreIn this work, two different structures are proposed which is fuzzy real normed space (FRNS) and fuzzy real Pre-Hilbert space (FRPHS). The basic concept of fuzzy norm on a real linear space is first presented to construct space, which is a FRNS with some modification of the definition introduced by G. Rano and T. Bag. The structure of fuzzy real Pre-Hilbert space (FRPHS) is then presented which is based on the structure of FRNS. Then, some of the properties and related concepts for the suggested space FRN such as -neighborhood, closure of the set named , the necessary condition for separable, fuzzy linear manifold (FLM) are discussed. The definition for a fuzzy seminorm on is also introduced with the prove that a fuzzy seminorm on
... Show MoreThis paper is devoted to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuzzy -ω-topological spaces, weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω- topological spaces. Also, Several characterizations and properties of this class are also given as well. Finally, we focused on studying the relationship between weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω-topological spaces.
The concept of bipolar fuzzy ideals in a TM-algebra was introduced and some properties of these ideals are investigated. Also, a few relations between a bipolar fuzzy ideal and T-ideal are discussed. A new bipolar fuzzy set with a homomorphism of TM-algebra is defined. The Cartesian product of bipolar fuzzy T-ideals in Cartesian product TM-algebras is given.
A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
Our aim was to investigate the changes in the myocardium stiffness index for patients suffering from systemic hypertension, and to assess their left ventricular performance. We studied 263 hypertensive patients and 166 healthy subjects as a control group. By using conventional Doppler echocardiography, the following parameters were measured—Left ventricular end diastolic diameter, left ventricular end systolic diameter, transmitral early velocity, isovolumic relaxation time, and isovolumic contraction time. Tissue Doppler imaging (TDI) was used in the measurements of the early mitral annular velocity (Ea) and the diastolic stiffness was obtained by calculating the ratio E\Ea\LVIDd. Index myocardial performance (IMP) was calculated
... Show MoreThe Sliding Mode Control (SMC) has been among powerful control techniques increasingly. Much attention is paid to both theoretical and practical aspects of disciplines due to their distinctive characteristics such as insensitivity to bounded matched uncertainties, reduction of the order of sliding equations of motion, decoupling mechanical systems design. In the current study, two-link robot performance in the Classical SMC is enhanced via Adaptive Sliding Mode Controller (ASMC) despite uncertainty, external disturbance, and coulomb friction. The key idea is abstracted as follows: switching gains are depressed to the low allowable values, resulting in decreased chattering motion and control's efforts of the two-link robo
... Show More