Abstract. This work presents a detailed design of a three-jointed tendon-driven robot finger with a cam/pulleys transmission and joint Variable Stiffness Actuator (VSA). The finger motion configuration is obtained by deriving the cam/pulleys transmission profile as a mathematical solution that is then implemented to achieve contact force isotropy on the phalanges. A VSA is proposed, in which three VSAs are designed to act as a muscle in joint space to provide firm grasping. As a mechatronic approach, a suitable type and number of force sensors and actuators are designed to sense the touch, actuate the finger, and tune the VSAs. The torque of the VSAs is controlled utilizing a designed Multi Input Multi Output (MIMO) fuzzy controller. The fuzzy controller input is the force sensors' signals that are used to set the appropriate VSA torque. The fuzzy controller parameters are then tuned using a genetic algorithm as an optimization technique. The objective function of the genetic algorithm is to avoid unbalance torque in the individual joints and to reduce the difference between the values of the supplied VSAs torques. Finally, the operation of the aforementioned finger system is organized through a simple control algorithm. The function of this algorithm is to enable the detection of the unknown object and simultaneously automatically activate the optimized fuzzy controller thus eliminating the necessity of any external control unit.
We introduce and discuss the modern type of fibrewise topological spaces, namely fibrewise fuzzy topological spaces. Also, we introduce the concepts of fibrewise closed fuzzy topological spaces, fibrewise open fuzzy topological spaces, fibrewise locally sliceable fuzzy topological spaces and fibrewise locally sectionable fuzzy topological spaces. Furthermore, we state and prove several theorems concerning these concepts.
In this paper the research introduces a new definition of a fuzzy normed space then the related concepts such as fuzzy continuous, convergence of sequence of fuzzy points and Cauchy sequence of fuzzy points are discussed in details.
This paper introduce two types of edge degrees (line degree and near line degree) and total edge degrees (total line degree and total near line degree) of an edge in a fuzzy semigraph, where a fuzzy semigraph is defined as (V, σ, μ, η) defined on a semigraph G* in which σ : V → [0, 1], μ : VxV → [0, 1] and η : X → [0, 1] satisfy the conditions that for all the vertices u, v in the vertex set, μ(u, v) ≤ σ(u) ᴧ σ(v) and η(e) = μ(u1, u2) ᴧ μ(u2, u3) ᴧ … ᴧ μ(un-1, un) ≤ σ(u1) ᴧ σ(un), if e = (u1, u2, …, un), n ≥ 2 is an edge in the semigraph G
... Show MoreThe concept of fuzzy orbit open sets under the mapping
Fuzzy orbit topological space is a new structure very recently given by [1]. This new space is based on the notion of open fuzzy orbit sets. The aim of this paper is to provide applications of open fuzzy orbit sets. We introduce the notions of fuzzy orbit irresolute mappings and fuzzy orbit open (resp. irresolute open) mappings and studied some of their properties. .
Within that research, we introduce fibrewise fuzzy types of the most important separation axioms in ordinary fuzz topology, namely fibrewise fuzzy (T 0 spaces, T 1 spaces, R 0 spaces, Hausdorff spaces, functionally Hausdorff spaces, regular spaces, completely regular spaces, normal spaces, and normal spaces). Too we add numerous outcomes about it.
The purpose of this research is to show a constructive method
for using known fuzzy groups as building blocks to form more fuzzy
subgroups. As we shall describe employing this procedure with the
fuzzy generating subgroups give us a large class of fuzzy
subgroup of abelian groups which include all fuzzy subgroup of
abelian groups of finite order.
Massive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless communications networks. However, for massive-MIMO systems to realize their maximum potential gain, sufficiently accurate downlink (DL) channel state information (CSI) with low overhead to meet the short coherence time (CT) is required. Therefore, this article aims to overcome the technical challenge of DL CSI estimation in a frequency-division-duplex (FDD) massive-MIMO with short CT considering five different physical correlation models. To this end, the statistical structure of the massive-MIMO channel, which is captured by the physical correlation is exploited to find sufficiently
... Show MoreIn this work, two different structures are proposed which is fuzzy real normed space (FRNS) and fuzzy real Pre-Hilbert space (FRPHS). The basic concept of fuzzy norm on a real linear space is first presented to construct space, which is a FRNS with some modification of the definition introduced by G. Rano and T. Bag. The structure of fuzzy real Pre-Hilbert space (FRPHS) is then presented which is based on the structure of FRNS. Then, some of the properties and related concepts for the suggested space FRN such as -neighborhood, closure of the set named , the necessary condition for separable, fuzzy linear manifold (FLM) are discussed. The definition for a fuzzy seminorm on is also introduced with the prove that a fuzzy seminorm on
... Show More