Huge number of medical images are generated and needs for more storage capacity and bandwidth for transferring over the networks. Hybrid DWT-DCT compression algorithm is applied to compress the medical images by exploiting the features of both techniques. Discrete Wavelet Transform (DWT) coding is applied to image YCbCr color model which decompose image bands into four subbands (LL, HL, LH and HH). The LL subband is transformed into low and high frequency components using Discrete Cosine Transform (DCT) to be quantize by scalar quantization that was applied on all image bands, the quantization parameters where reduced by half for the luminance band while it is the same for the chrominance bands to preserve the image quality, the zig
... Show MoreThe prediction process of time series for some time-related phenomena, in particular, the autoregressive integrated moving average(ARIMA) models is one of the important topics in the theory of time series analysis in the applied statistics. Perhaps its importance lies in the basic stages in analyzing of the structure or modeling and the conditions that must be provided in the stochastic process. This paper deals with two methods of predicting the first was a special case of autoregressive integrated moving average which is ARIMA (0,1,1) if the value of the parameter equal to zero, then it is called Random Walk model, the second was the exponential weighted moving average (EWMA). It was implemented in the data of the monthly traff
... Show MoreIn this paper we use non-polynomial spline functions to develop numerical methods to approximate the solution of 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of these method, and to compare the computed results with other known methods.
In this work, we first construct Hermite wavelets on the interval [0,1) with it’s product, Operational matrix of integration 2^k M×2^k M is derived, and used it for solving nonlinear Variational problems with reduced it to a system of algebric equations and aid of direct method. Finally, some examples are given to illustrate the efficiency and performance of presented method.
In this article, we aim to define a universal set consisting of the subscripts of the fuzzy differential equation (5) except the two elements and , subsets of that universal set are defined according to certain conditions. Then, we use the constructed universal set with its subsets for suggesting an analytical method which facilitates solving fuzzy initial value problems of any order by using the strongly generalized H-differentiability. Also, valid sets with graphs for solutions of fuzzy initial value problems of higher orders are found.
This paper deals with the numerical solution of the discrete classical optimal control problem (DCOCP) governing by linear hyperbolic boundary value problem (LHBVP). The method which is used here consists of: the GFEIM " the Galerkin finite element method in space variable with the implicit finite difference method in time variable" to find the solution of the discrete state equation (DSE) and the solution of its corresponding discrete adjoint equation, where a discrete classical control (DCC) is given. The gradient projection method with either the Armijo method (GPARM) or with the optimal method (GPOSM) is used to solve the minimization problem which is obtained from the necessary conditi
... Show MorePrecision is one of the main elements that control the quality of a geodetic network, which defines as the measure of the network efficiency in propagation of random errors. This research aims to solve ZOD and FOD problems for a geodetic network using Rosenbrock Method to optimize the geodetic networks by using MATLAB programming language, to find the optimal design of geodetic network with high precision. ZOD problem was applied to a case study network consists of 19 points and 58 designed distances with a priori deviation equal to 5mm, to determine the best points in the network to consider as control points. The results showed that P55 and P73 having the minimum ellipse of error and considered as control points. FOD problem was applie
... Show MoreThis paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples
This study focuses on studying an oscillation of a second-order delay differential equation. Start work, the equation is introduced here with adequate provisions. All the previous is braced by theorems and examplesthat interpret the applicability and the firmness of the acquired provisions